Matemática, perguntado por Expertiee, 1 ano atrás

(50 PONTOS)

\left \{<br />
    \begin{array} {l}<br />
      2x+y=5\\<br />
      x+y^2=10<br />
    \end{array}<br />
\right.<br /><br />

Soluções para a tarefa

Respondido por Lukyo
0
\large\begin{array}{l} \textsf{Resolver o sistema:}\\\\ \left\{\! \begin{array}{rrrrrc} \mathsf{2x}&amp;\!\!+\!\!&amp;\mathsf{y}&amp;\!\!=\!\!&amp;\mathsf{5}&amp;\quad\mathsf{(i)}\\ \mathsf{x}&amp;\!\!+\!\!&amp;\mathsf{y^2}&amp;\!\!=\!\!&amp;\mathsf{10}&amp;\quad\mathsf{(ii)} \end{array} \right. \end{array}


\large\begin{array}{l} \textsf{Multiplicando a equa\c{c}\~ao (ii) por }\mathsf{(-2):}\\\\ \left\{\! \begin{array}{rrrrrc} \mathsf{2x}&amp;\!\!+\!\!&amp;\mathsf{y}&amp;\!\!=\!\!&amp;\mathsf{5}&amp;\quad\mathsf{(i)}\\ \mathsf{-2x}&amp;\!\!-\!\!&amp;\mathsf{2y^2}&amp;\!\!=\!\!&amp;\mathsf{-20}&amp;\quad\mathsf{(iii)} \end{array} \right.\\\\\ \textsf{sendo }\mathsf{(iii)=(-2)\cdot (ii).}\end{array}


\large\begin{array}{l} \textsf{Agora, some as equa\c{c}\~oes (i) e (iii) membro a membro:}\\\\ \mathsf{\diagup\!\!\!\!\! 2x+y-\diagup\!\!\!\!\! 2x-2y^2=5-20}\\\\ \mathsf{y-2y^2=-15}\\\\ \mathsf{0=-15-y+2y^2}\\\\ \mathsf{2y^2-y-15=0} \end{array}


\large\begin{array}{l} \textsf{Vou resolver a equa\c{c}\~ao acima via fatora\c{c}\~ao por agrupamento.}\\\\ \textsf{Reescreva convenientemente }\mathsf{-y}\textsf{ como }\mathsf{-6y+5y},\textsf{ e fatore:}\\\\ \mathsf{2y^2-6y+5y-15=0}\\\\ \mathsf{2y(y-3)+5(y-3)=0}\\\\ \mathsf{(y-3)(2y+5)=0} \end{array}

\large\begin{array}{l} \begin{array}{rcl} \mathsf{y-3=0}&amp;~\textsf{ ou }~&amp;\mathsf{2y+5=0}\\\\ \mathsf{y=3}&amp;~\textsf{ ou }~&amp;\mathsf{2y=-5}\\\\ \mathsf{y=3}&amp;~\textsf{ ou }~&amp;\mathsf{y=-\,\frac{5}{2}} \end{array} \end{array}


\large\begin{array}{l} \bullet~~\textsf{Para }\mathsf{y=3,}\textsf{ obtemos}\\\\ \mathsf{2x+3=5}\qquad\textsf{(pela equa\c{c}\~ao (i))}\\\\ \mathsf{2x=5-3}\\\\ \mathsf{2x=2}\\\\ \mathsf{x=\frac{2}{2}}\\\\ \mathsf{x=1}\\\\\\ \textsf{Uma solu\c{c}\~ao para o sistema \'e}\\\\ \mathsf{(x,\,y)=(1,\,3).} \end{array}


\large\begin{array}{l} \bullet~~\textsf{Para }\mathsf{y=-\,\frac{5}{2},}\textsf{ obtemos}\\\\ \mathsf{2x-\dfrac{5}{2}=5}\qquad\textsf{(pela equa\c{c}\~ao (i))}\\\\ \mathsf{2x=5+\dfrac{5}{2}}\\\\ \mathsf{2x=\dfrac{10}{2}+\dfrac{5}{2}}\\\\ \mathsf{2x=\dfrac{15}{2}}\\\\ \mathsf{x=\dfrac{15}{2}\cdot \dfrac{1}{2}}\\\\ \mathsf{x=\dfrac{15}{4}}\\\\\\ \textsf{Outra solu\c{c}\~ao para o sistema \'e}\\\\ \mathsf{(x,\,y)=\left(\frac{15}{4},\,-\,\frac{5}{2}\right).} \end{array}


\large\begin{array}{l} \textsf{Conjunto solu\c{c}\~ao: }\mathsf{S=\left\{(1,\,3),\,\left(\frac{15}{4},\,-\,\frac{5}{2}\right) \right \}} \end{array}


Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7471875


\large\begin{array}{l} \textsf{D\'uvidas? Comente.}\\\\\\ \textsf{Bons estudos! :-)} \end{array}


Tags: sistema equação segundo grau quadrática adição substituição fatoração por agrupamento

Respondido por analuor
1

Explicação passo-a-passo:

2x + y = 5 \\x +  {y}^{2}  = 10 \\  \\  y = 5 - 2x \\ x +  {y}^{2}  = 10 \\  \\ x + (5 - 2x {)}^{2}  = 10 \\  \\ x =  \frac{15}{4}  \\ x = 1 \\  \\ y = 5 - 2 \times  \frac{15}{4}  \\ y = 5 - 2 \times 1 \\  \\ y =  -  \frac{5}{2}  \\ y = 3 \\  \\ ( x_{1} ,y_{1}) = ( \frac{15}{4} ,  - \frac{5}{2} ) \\   ( x_{2} ,y_{2}) = (1,3) \\  \\

Verificação:

2 \times  \frac{15}{4}  -  \frac{5}{2}  = 5 \\  \frac{15}{4}  + ( -  \frac{5}{2}  {)}^{2}  = 10 \\  \\ 2 \times 1 + 3 = 5 \\ 1 +  {3}^{2}  = 10 \\  \\ 5 = 5 \\ 10 = 10 \\  \\

• Espero ter ajudado.

Perguntas interessantes