Matemática, perguntado por Lukyo, 1 ano atrás

(50 PONTOS) Obter uma forma fechada para as somas, utilizando a propriedade telescópica:

a) \displaystyle\sum\limits_{n=0}^{k}{2^{(n^2)}\cdot (2^{2n+1}-1)}

b) \displaystyle\sum\limits_{n=2}^{k}{\mathrm{\ell n}\left[1+\dfrac{\mathrm{\ell n}(n+1)}{\mathrm{\ell n}(n!)} \right ]}


Lukyo: Oi pessoal. Esta não é tão difícil quanto parece ser à primeira vista. É só fazer as manipulações certas!

Soluções para a tarefa

Respondido por Niiya
1
a)

2^{(n^{2})}\cdot(2^{2n+1}-1)=2^{(n^{2})}\cdot2^{2n+1}-1\cdot2^{(n^{2})}\\\\2^{(n^{2})}\cdot(2^{2n+1}-1)=2^{n^{2}+2n+1}-2^{(n^{2})}\\\\2^{(n^{2})}\cdot(2^{2n+1}-1)=2^{(n+1)^{2}}-2^{(n^{2})}

Definindo a sequência

a_{n}=2^{(n^{2})}

Temos que

2^{(n^{2})}\cdot(2^{2n+1}-1)=\Delta(a_{n})

Portanto:

\displaystyle\sum\limits_{n=0}^{k}2^{(n^{2})}\cdot(2^{2n+1}-1)=\sum\limits_{n=0}^{k}\Delta(a_{n})\\\\\\\sum\limits_{n=0}^{k}2^{(n^{2})}\cdot(2^{2n+1}-1)=a_{k+1}-a_{0}\\\\\\\sum\limits_{n=0}^{k}2^{(n^{2})}\cdot(2^{2n+1}-1)=2^{(k+1)^{2}}-2^{(0^{2})}\\\\\\\boxed{\boxed{\sum\limits_{n=0}^{k}2^{(n^{2})}\cdot(2^{2n+1}-1)=2^{(k+1)^{2}}-1}}
______________________________

b)

1+\dfrac{ln(n+1)}{ln(n!)}=\dfrac{ln(n!)}{ln(n!)}+\dfrac{ln(n+1)}{ln(n!)}\\\\\\1+\dfrac{ln(n+1)}{ln(n!)}=\dfrac{ln(n!)+ln(n+1)}{ln(n!)}\\\\\\1+\dfrac{ln(n+1)}{ln(n!)}=\dfrac{ln[n!\cdot(n+1)]}{ln(n!)}\\\\\\1+\dfrac{ln(n+1)}{ln(n!)}=\dfrac{ln[(n+1)!]}{ln(n!)}

Então

ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=ln\left[\dfrac{ln[(n+1)!]}{ln(n!)}\right]\\\\\\ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=ln(ln[(n+1)!])-ln(ln(n!))

Se definirmos a sequência a_{n}=ln(ln(n!)), temos

ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=\Delta(a_{n})

Portanto:

\displaystyle\sum\limits_{n=2}^{k}ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=\sum\limits_{n=2}^{k}\Delta(a_{n})\\\\\\\displaystyle\sum\limits_{n=2}^{k}ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=a_{k+1}-a_{2}\\\\\\\displaystyle\sum\limits_{n=2}^{k}ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=ln(ln([k+1]!))-ln(ln(2!))\\\\\\\boxed{\boxed{\displaystyle\sum\limits_{n=2}^{k}ln\left[1+\dfrac{ln(n+1)}{ln(n!)}\right]=ln(ln([k+1]!))-ln(ln(2))}}

OBS: ln(ln(2)) está bem definido, pois ln(2) é positivo

Niiya: Respondi essa, finalmente! :)
Lukyo: Ótimo!! :-) Obrigado!
Perguntas interessantes