Matemática, perguntado por englishhelper101, 6 meses atrás

50 PONTOS! AJUDAAA Represente no mesmo plano complexo e obtenha |z| e arg (z)

a) z = 1 -i

b) z = -\sqrt{3} + i

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{z = 1 - i}

\mathsf{|\:z\:| = \sqrt{a^2 + b^2}}

\mathsf{|\:z\:| = \sqrt{(1)^2 + (-1)^2}}

\mathsf{|\:z\:| = \sqrt{1 + 1}}

\boxed{\boxed{\mathsf{|\:z\:| = \sqrt{2}}}}

\mathsf{sen\:\Theta = \dfrac{b}{|\:z\:|} = -\dfrac{1}{\sqrt{2}} = -\dfrac{\sqrt{2}}{2}}

\mathsf{cos\:\Theta = \dfrac{a}{|\:z\:|} = \dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}}

\mathsf{arg(z) = \Theta = 315\textdegree = \dfrac{7\pi }{4}}

\boxed{\boxed{\mathsf{z = \sqrt{2}\:\left(cos\:\dfrac{7\pi }{4} + i\:sen\:\dfrac{7\pi }{4}\right)}}}

\mathsf{z = -\sqrt{3} + i}

\mathsf{|\:z\:| = \sqrt{a^2 + b^2}}

\mathsf{|\:z\:| = \sqrt{(-\sqrt{3})^2 + (1)^2}}

\mathsf{|\:z\:| = \sqrt{3 + 1}}

\mathsf{|\:z\:| = \sqrt{4}}

\boxed{\boxed{\mathsf{|\:z\:| = 2}}}

\mathsf{sen\:\Theta = \dfrac{b}{|\:z\:|} = \dfrac{1}{2}}

\mathsf{cos\:\Theta = \dfrac{a}{|\:z\:|} = -\dfrac{\sqrt{3}}{2}}

\mathsf{arg(z) = \Theta = 150\textdegree = \dfrac{5\pi }{6}}

\boxed{\boxed{\mathsf{z = 2\:\left(cos\:\dfrac{5\pi }{6} + i\:sen\:\dfrac{5\pi }{6}\right)}}}


englishhelper101: Excelente! obrigada
englishhelper101: pode me ajudar nessa? https://brainly.com.br/tarefa/51088658
Perguntas interessantes