(50 PONTOS) A figura em anexo mostra um quadrado ABCD inscrito a um setor circular de raio
cujo ângulo de abertura mede
(
).
Sabendo que a base CD é paralela à reta horizontal
obtenha uma expressão para a área do quadrado ABCD (em função de
e
).
_________
Resposta: ![A=\dfrac{4r^2}{1+\left(2+\mathrm{cotg}\,\frac{x}{2}\right)^{\!2}} A=\dfrac{4r^2}{1+\left(2+\mathrm{cotg}\,\frac{x}{2}\right)^{\!2}}](https://tex.z-dn.net/?f=A%3D%5Cdfrac%7B4r%5E2%7D%7B1%2B%5Cleft%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%5Cright%29%5E%7B%5C%212%7D%7D)
Anexos:
![](https://pt-static.z-dn.net/files/dda/79bd6acd7ba25a02793f7f7651ca4bb5.png)
Lukyo:
Pessoal, não tem a raiz quadrada no denominador não.. eu tinha digitado errado
Soluções para a tarefa
Respondido por
4
Veja as imagens para compreender a notação
_____________________________
Vamos encontrar os ângulos internos do triângulo (isósceles)
:
![a+a+x=\pi~~\Leftrightarrow~~2a+x=\pi~~\Leftrightarrow~~2a=\pi-x~\Leftrightarrow~\boxed{\boxed{a=\dfrac{\pi}{2}-\dfrac{x}{2}}} a+a+x=\pi~~\Leftrightarrow~~2a+x=\pi~~\Leftrightarrow~~2a=\pi-x~\Leftrightarrow~\boxed{\boxed{a=\dfrac{\pi}{2}-\dfrac{x}{2}}}](https://tex.z-dn.net/?f=a%2Ba%2Bx%3D%5Cpi%7E%7E%5CLeftrightarrow%7E%7E2a%2Bx%3D%5Cpi%7E%7E%5CLeftrightarrow%7E%7E2a%3D%5Cpi-x%7E%5CLeftrightarrow%7E%5Cboxed%7B%5Cboxed%7Ba%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D-%5Cdfrac%7Bx%7D%7B2%7D%7D%7D)
Agora, vamos achar a altura desse triângulo:
![\mathrm{tg}\,a=\dfrac{h}{(\frac{\ell}{2})}~~\Leftrightarrow~~h=\dfrac{\ell}{2}\,\mathrm{tg}(\frac{\pi}{2}-\frac{x}{2}) \mathrm{tg}\,a=\dfrac{h}{(\frac{\ell}{2})}~~\Leftrightarrow~~h=\dfrac{\ell}{2}\,\mathrm{tg}(\frac{\pi}{2}-\frac{x}{2})](https://tex.z-dn.net/?f=%5Cmathrm%7Btg%7D%5C%2Ca%3D%5Cdfrac%7Bh%7D%7B%28%5Cfrac%7B%5Cell%7D%7B2%7D%29%7D%7E%7E%5CLeftrightarrow%7E%7Eh%3D%5Cdfrac%7B%5Cell%7D%7B2%7D%5C%2C%5Cmathrm%7Btg%7D%28%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cfrac%7Bx%7D%7B2%7D%29)
Porém, temos a seguinte identidade:
![\mathrm{tg}(\frac{\pi}{2}-\frac{x}{2})=\mathrm{cotg}\,\frac{x}{2} \mathrm{tg}(\frac{\pi}{2}-\frac{x}{2})=\mathrm{cotg}\,\frac{x}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7Btg%7D%28%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Cfrac%7Bx%7D%7B2%7D%29%3D%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D)
Daí:
![\boxed{\boxed{h=\dfrac{\ell}{2}\,\mathrm{cotg}\bigg(\frac{x}{2}\bigg)}} \boxed{\boxed{h=\dfrac{\ell}{2}\,\mathrm{cotg}\bigg(\frac{x}{2}\bigg)}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bh%3D%5Cdfrac%7B%5Cell%7D%7B2%7D%5C%2C%5Cmathrm%7Bcotg%7D%5Cbigg%28%5Cfrac%7Bx%7D%7B2%7D%5Cbigg%29%7D%7D)
Note que![\overline{RB}=\overline{RC}+\overline{CB}=h+\ell=\dfrac{\ell}{2}\mathrm{cotg}\,\frac{x}{2}+\ell=\dfrac{\ell}{2}(2+\mathrm{cotg}\,\frac{x}{2}) \overline{RB}=\overline{RC}+\overline{CB}=h+\ell=\dfrac{\ell}{2}\mathrm{cotg}\,\frac{x}{2}+\ell=\dfrac{\ell}{2}(2+\mathrm{cotg}\,\frac{x}{2})](https://tex.z-dn.net/?f=%5Coverline%7BRB%7D%3D%5Coverline%7BRC%7D%2B%5Coverline%7BCB%7D%3Dh%2B%5Cell%3D%5Cdfrac%7B%5Cell%7D%7B2%7D%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%2B%5Cell%3D%5Cdfrac%7B%5Cell%7D%7B2%7D%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%29)
Olhando para o triângulo
, temos, pelo Teorema de Pirágoras:
![(\overline{RB})^{2}+(\overline{RO})^{2}=(\overline{OB})^{2}\\\\\\\bigg[\dfrac{\ell}{2}(2+\mathrm{cotg}\,\frac{x}{2})\bigg]^{2}+\bigg[\dfrac{\ell}{2}\bigg]^{2}=r^{2}\\\\\\\dfrac{~\ell^{2}}{4}(2+\mathrm{cotg}\,\frac{x}{2})^{2}+\dfrac{~\ell^{2}}{4}=r^{2}\\\\\\\dfrac{~\ell^{2}}{4}\bigg[1+(2+\mathrm{cotg}\,\frac{x}{2})^{2}\bigg]=r^{2}\\\\\\\ell^{2}=\dfrac{4r^{2}}{1+(2+\mathrm{cotg}\,\frac{x}{2})^{2}} (\overline{RB})^{2}+(\overline{RO})^{2}=(\overline{OB})^{2}\\\\\\\bigg[\dfrac{\ell}{2}(2+\mathrm{cotg}\,\frac{x}{2})\bigg]^{2}+\bigg[\dfrac{\ell}{2}\bigg]^{2}=r^{2}\\\\\\\dfrac{~\ell^{2}}{4}(2+\mathrm{cotg}\,\frac{x}{2})^{2}+\dfrac{~\ell^{2}}{4}=r^{2}\\\\\\\dfrac{~\ell^{2}}{4}\bigg[1+(2+\mathrm{cotg}\,\frac{x}{2})^{2}\bigg]=r^{2}\\\\\\\ell^{2}=\dfrac{4r^{2}}{1+(2+\mathrm{cotg}\,\frac{x}{2})^{2}}](https://tex.z-dn.net/?f=%28%5Coverline%7BRB%7D%29%5E%7B2%7D%2B%28%5Coverline%7BRO%7D%29%5E%7B2%7D%3D%28%5Coverline%7BOB%7D%29%5E%7B2%7D%5C%5C%5C%5C%5C%5C%5Cbigg%5B%5Cdfrac%7B%5Cell%7D%7B2%7D%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%29%5Cbigg%5D%5E%7B2%7D%2B%5Cbigg%5B%5Cdfrac%7B%5Cell%7D%7B2%7D%5Cbigg%5D%5E%7B2%7D%3Dr%5E%7B2%7D%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%7E%5Cell%5E%7B2%7D%7D%7B4%7D%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%29%5E%7B2%7D%2B%5Cdfrac%7B%7E%5Cell%5E%7B2%7D%7D%7B4%7D%3Dr%5E%7B2%7D%5C%5C%5C%5C%5C%5C%5Cdfrac%7B%7E%5Cell%5E%7B2%7D%7D%7B4%7D%5Cbigg%5B1%2B%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%29%5E%7B2%7D%5Cbigg%5D%3Dr%5E%7B2%7D%5C%5C%5C%5C%5C%5C%5Cell%5E%7B2%7D%3D%5Cdfrac%7B4r%5E%7B2%7D%7D%7B1%2B%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%29%5E%7B2%7D%7D)
Portanto, encontramos uma expressão para a área do quadrado, uma vez que![A=\ell^{2} A=\ell^{2}](https://tex.z-dn.net/?f=A%3D%5Cell%5E%7B2%7D)
![\boxed{\boxed{A=\dfrac{4r^{2}}{1+(2+\mathrm{cotg}\,\frac{x}{2})^{2}}}} \boxed{\boxed{A=\dfrac{4r^{2}}{1+(2+\mathrm{cotg}\,\frac{x}{2})^{2}}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7BA%3D%5Cdfrac%7B4r%5E%7B2%7D%7D%7B1%2B%282%2B%5Cmathrm%7Bcotg%7D%5C%2C%5Cfrac%7Bx%7D%7B2%7D%29%5E%7B2%7D%7D%7D%7D)
_____________________________
Vamos encontrar os ângulos internos do triângulo (isósceles)
Agora, vamos achar a altura desse triângulo:
Porém, temos a seguinte identidade:
Daí:
Note que
Olhando para o triângulo
Portanto, encontramos uma expressão para a área do quadrado, uma vez que
Anexos:
![](https://pt-static.z-dn.net/files/d31/b0d363759dbd812045a061e021b536c9.png)
![](https://pt-static.z-dn.net/files/d67/dd5663cdee4517bd50ba174b520ab424.png)
Perguntas interessantes
Ed. Moral,
11 meses atrás
Música,
11 meses atrás
Matemática,
11 meses atrás
Pedagogia,
1 ano atrás
Inglês,
1 ano atrás