5. Representar graficamente as retas dadas por: a) y = 2x – 4, b) y = 6, c) y = 10 – 2x, d) y = 6 + 2x,Dica: para fazer o gráfico pode-se dar até cinco valores para o x, como por exemplo, -2, -1, 0, 1 e 2 e calcula o valor numérico da função (o valor de y). Use a régua para fazer o sistema cartesiano.
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
Olá. Existem vários caminhos para ir a Roma. Na matemática também. Por isso ela é tão divertida. A gente fica tentando encontrar os vários meios de chegar a um mesmo resultado. Iupi!! Isso nos faz aprender muitas coisas. E cada vez que a gente aprende e avança mais na matemática novas soluções e formas de calcular se tornam possíveis.
Seguem três, para começar:
Bom, pode-se escolher valores quaisquer para substituir na equação da reta.
Pode-se escolher sempre os mesmos valores.
Pode-se escolher valores especiais.
Prefiro os valores especiais. Eles são os valores que fazem a reta tocar os eixos x e y.... Daí de quebra a gente já tem em mãos valores que respondem outras perguntas e exercícios.
Bom, quando a gente passeia o dedo sobre a reta e caminha com os valores dela sobre o eixo x, horizontalmente, e chega no ponto x = 0, podemos notar que a reta alcança o eixo y, cruzando com ele.
Para x = 0 a reta toca o eixo y.
Quando a gente caminha com a reta passeando o dedo sobre o eixo y, verticalmente, e alcança o valor de y = 0, vemos que a reta toca exatamente um ponto no eixo x, cruzando com ele.
Para y = 0 a reta toca o eixo x.
Lembre sempre disso! Por isso são valores especiais. São valores de intersecção da reta com os eixos coordenados (eixo x e eixo y).
==============
Para tirar qualquer dúvida, é bom deixarmos logo claro os nomes dessa turma... para você saber do que o professor está falando nos exercícios e na prova... ^^)
Eixo x é chamado eixo das abcissas.
Eixo y é chamado eixo das ordenadas.
O eixo x e o eixo y juntos são os eixos coordenados (ou eixos das coordenadas). E quais são as tais coordenadas??
As coordenadas são os números x e y, juntos.
Por isso, as coordenadas dos pontos são os números x e y: (x, y).
Sozinhos, chamamos: x é a abcissa, o y é a ordenada.
Beleza? Vamos lá...
===============
a) y = 2x – 4,
Para x = 0, temos:
y = 2(0) -4 = 0 -4 = -4
Ou seja, a reta y = 2x -4 toca o eixo y em y = -4
Para y = 0, temos:
0 = 2x -4
2x = 4
x = 2
Ou seja, a reta y = 2x -4 toca o eixo x em x = 2
Resumindo:
quando x = 0, y = -4
quando y = 0, x = 2.
Então já temos dois pontos, e com eles podemos traçar a reta:
(0, -4) e (2, 0)
==================
b) y = 6,
Para x = 0, y = 6.
Perceba que, não havendo x na função, qualquer valor de x que colocarmos não interferirá na função, e ela sempre será igual a 6.
para x = 1, y = 6
para x = -3, y = 6
para x = 200, y = 6
...
Para y = 0,
0 = 6, e isso não é possível. OU é zero OU é seis... Zero não é seis, seis não é zero... impossível...
O que isso quer dizer? Que a reta não consegue tocar o eixo x...
Quando é que uma reta não consegue tocar o eixo x? Quando ela é paralela ao eixo x....
Ah.... então se ela é paralela ao eixo x nenhuma das suas pontas vai tocar o eixo x, nunquinha....
E o gráfico? Ficará como uma reta que passa no y = 6, que inclusive é.... paralela ao eixo x....
===============
c) y = 10 – 2x,
Para x = 0,
y = 10 -2(0) = 10 -0 = 10
(0, 10)
Para y = 0,
0 = 10 -2x
2x = 10
x = 5
(5, 0)
===============
d) y = 6 + 2x
Vamos fazer essa ainda mais resumidamente, para você pegar o jeito de poucos cálculos. Usa menos papel e usa mais a mente.
y = 6 +2(0) = 6 ⇔ (0, 6)
0 = 6+ 2x ⇒ 2x = -6 ⇒ x = -3 ⇔ (-3, 0)
Duas linhas e a gente tem tudo. Beleza!
=======
Só por curiosidade, se você quiser saber porque aqueles sinaizinhos são diferentes...
Esse sinal ⇒ (lê-se "implica") quer dizer que uma coisa gera a outra, implica na outra. É ida....
Esse sinal ⇔ (lê-se "se e somente se") quer dizer que uma coisa é outra "se somente se" a segunda quer dizer a mesma coisa que a primeira. É ida e volta...
======
Abração.