Matemática, perguntado por Hyper2628, 7 meses atrás

5- O termo independente de x no desenvolvimento do binômio (x/2 / 2/x) elevado a 12

a) 4096
b) 2048
c) 1024
d) 1136
e) 924

Soluções para a tarefa

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

O termo geral é:

\sf T_{p+1}=\dbinom{12}{p}\cdot\Big(\dfrac{x}{2}\Big)^{12-p}\cdot\Big(\dfrac{2}{x}\Big)^{p}

Temos que:

\sf x^{12-p}\cdot\dfrac{1}{x^{p}}=x^0

\sf \dfrac{x^{12-p}}{x^{p}}=x^0

\sf x^{12-p-p}=x^0

\sf x^{12-2p}=x^0

Igualando os expoentes:

\sf 12-2p=0

\sf 2p=12

\sf p=\dfrac{12}{2}

\sf p=6

O termo independente é:

\sf T_{p+1}=\dbinom{12}{p}\cdot\Big(\dfrac{x}{2}\Big)^{12-p}\cdot\Big(\dfrac{2}{x}\Big)^{p}

\sf T_{6+1}=\dbinom{12}{6}\cdot\Big(\dfrac{x}{2}\Big)^{12-6}\cdot\Big(\dfrac{2}{x}\Big)^{6}

\sf T_{7}=924\cdot\Big(\dfrac{x}{2}\Big)^{6}\cdot\Big(\dfrac{2}{x}\Big)^{6}

\sf T_{7}=924\cdot\dfrac{x^6}{2^6}\cdot\dfrac{2^6}{x^6}

\sf \red{T_{7}=924}

Letra E

Perguntas interessantes