5-Desenvolvendo a expressão (3x^5 - 0,5)^2, encontramos um trinomio:
a)Qual é esse trinomio?
b)Qual é o coeficiente numérico do termo em x^5?
c)Qual é o produto dos coeficientes numéricos do trinomio?
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
.
. Quadrado da diferença de dois termos
.
. (3x^5 - 0,5)² = (3x^5)² - 2 . 3x^5 . 0,5 + (0,5)²
. = 9x^10 - 3x^5 + 0,25
.
. a) trinômio: 9x^10 - 3x^5 + 0,25
.
. b) - 3 (coeficiente numérico de - 3x^5)
.
. c) 9 .( - 3) . 0,25 = - 6,75
.
(Espero ter colaborado)
Desenvolvendo a expressão do enunciado, temos as respostas dos itens logo a seguir:
Vejamos como resolver esse exercício. Estamos diante de um problema de polinômio.
Não será necessária a utilização de nenhuma fórmula para a resolução da mesma, bastando seguir o raciocínio da questão para se chegar no resultado.
Vamos aos dados iniciais:
- Desenvolvendo a expressão (3x⁵ - 0,5)², encontramos um trinômio.
- Qual é esse trinômio?
- Qual é o coeficiente numérico do termo em x⁵?
- Qual é o produto dos coeficientes numéricos do trinômio?
Resolvendo:
A)
Temos que o quadrado de um trinômio é:
(3x⁵)² - 2.(3x⁵).(0,5) + (0,5)² = 9x¹⁰ - 3x⁵ + 0,25
Portanto o trinômio que estamos buscando é: 9x¹⁰ - 3x⁵ + 0,25
B)
O coeficiente numérico do termo em x⁵ no trinômio é -3.
C)
O produto dos coeficientes numéricos do trinômio é igual a:
(9) . (-3) . (0,25) = -6,75
Veja mais sobre matemática em:
https://brainly.com.br/tarefa/20558338