5) A soma do quadrado de um número com o seu dobro é 24. Determine o número.
Soluções para a tarefa
Respondido por
1
Explicação passo-a-passo:
x² - 2.x = 24
x² -2x -24=0
equação do segundo grau
∆= (-2)² -4.1.(-24)
∆= 4 + 96
∆= 100
x= - (-2) ±√100/2.1
x= 2 ±10/2
x1= 2+10/2= 12/2= 6
x2= 2-10/2= -8/2= -4
S= { -4, 6}
lorenasena619:
Obrigada
Respondido por
0
O Exercício se trata de uma Equação do 2 grau
X = o número a ser descoberto
Logo:
X² + 2•X = 24
X² + 2•X - 24 = 0
A soma do quadrado de X com o seu dobro é igual a 24
RESOLUÇÃO DA EQUAÇÃO
Primeiramente deve-se descobrir o valor de Delta (Δ)
Δ=b²-4ac
Δ=2²-4•1•(-24)
Δ=4+96
Δ=100
Após calcular que Δ=100, observa-se que por Δ>0, obtêm-se dois possíveis resultados para X.
Cálculo de X1:
X = (-b±√Δ)/2a
X1 = (-2 + √100)/2
X1 = (-2 + 10)/2
X1 = 8/2
X1 = 4
Cálculo de X2:
X2 = (-2 - √100)/2
X2 = (-2 - 10)/2
X2 = -12/2
X2 = -6
Desta maneira, compreende-se que o conjunto solução é S = {4 ; -6}
Espero ter ajudado, bons estudos!!
X = o número a ser descoberto
Logo:
X² + 2•X = 24
X² + 2•X - 24 = 0
A soma do quadrado de X com o seu dobro é igual a 24
RESOLUÇÃO DA EQUAÇÃO
Primeiramente deve-se descobrir o valor de Delta (Δ)
Δ=b²-4ac
Δ=2²-4•1•(-24)
Δ=4+96
Δ=100
Após calcular que Δ=100, observa-se que por Δ>0, obtêm-se dois possíveis resultados para X.
Cálculo de X1:
X = (-b±√Δ)/2a
X1 = (-2 + √100)/2
X1 = (-2 + 10)/2
X1 = 8/2
X1 = 4
Cálculo de X2:
X2 = (-2 - √100)/2
X2 = (-2 - 10)/2
X2 = -12/2
X2 = -6
Desta maneira, compreende-se que o conjunto solução é S = {4 ; -6}
Espero ter ajudado, bons estudos!!
Perguntas interessantes
Pedagogia,
7 meses atrás
Matemática,
7 meses atrás
Matemática,
7 meses atrás
Matemática,
9 meses atrás
Biologia,
1 ano atrás
Geografia,
1 ano atrás