Matemática, perguntado por ErickziiN007, 8 meses atrás

4ª) Sobre o comportamento da função f(x) = 4x –
3, marque a alternativa correta:
a) f(x) é crescente, pois seu coeficiente angular é
positivo e igual a 4.
b) f(x) é decrescente, pois seu coeficiente angular
é positivo e igual a 4.
c) f(x) é decrescente, pois seu coeficiente angular
é positivo e igual a -3.
d) f(x) é crescente, pois seu coeficiente angular é
negativo e igual a -3.
e) f(x) é decrescente, pois o seu coeficiente linear
é negativo e igual a -3.

Soluções para a tarefa

Respondido por RapaduraYT
26

Resposta:

Alternativa A

Explicação passo-a-passo:

Para saber se a função é crescente ou decrescente, basta olhar o coeficiente angular. Se ele for positivo, a função é crescente, se for negativo, ela será decrescente. Nesse caso a = 4, então, a função é crescente, pois seu coeficiente angular é positivo e igual a 4.

Respondido por LouiseSG
1

Na função dada: f(x) = 4x –3

a) f(x) é crescente, pois seu coeficiente angular é positivo e igual a 4.

A função do primeiro grau tem a seguinte lei de formação:

f(x) = ax + b

Onde podemos definir que a e b são os coeficientes da função, são números reais, onde a deve ser diferente de zero (a ≠ 0).  

Definição dos coeficientes

Os coeficientes recebem nomes especiais:

  • "a" é o coeficiente angular e
  • "b" é o coeficiente linear.

O coeficiente angular nos diz se o gráfico da função é crescente ou decrescente:

  • Se a > 0, então a reta é crescente;
  • Se a < 0, então a reta é decrescente.

O coeficiente linear nos diz o ponto em que a reta cortará o eixo das ordenadas: (0,b).

Logo, podemos concluir que, na função dada:

f(x) = 4x –3, f(x) é crescente, pois seu coeficiente angular é positivo e igual a 4.

Mais sobre função afim em:

brainly.com.br/tarefa/20718741

Anexos:
Perguntas interessantes