√45 + 3√20 -√125=
Se puder explicar a conta...
É para escrever na forma mais simples possível
Soluções para a tarefa
Respondido por
1
Olá!
Para resolver esse tipo de conta precisamos simplificar os radicais, pois eles não são quadrados perfeitos ou seja não tem resultado exato.
√45
Usamos o MMC para simplificar(se um número do MMC tiver um expoente 2, você pula para fora da raíz e se ele tiver um expoente três você separa ele multiplicando com o expoente 2 + o expoente 1).
MMC(45) =
45 | 3
15-| 3
5--|5
1---|/3² × 5
√(3² × 5) = 3√5
Agora vamos resolver o MMC(20)
20| 2
10-| 2
5--| 5
1---|-/ 2² × 5
3√20 = 3√(2² × 5) = 3 . 2√5 = 6√5
E por último temos o MMC(125).
125|5
25-|5
5---|5
1----| / 5³ = 5² × 5
√125 = √(5² × 5) = 5√5
Agora só resolver operações com radicais semelhantes(radicais são os números ue tem dentro da raíz).
3√5 + 6√5 - 5√5
Lembrando que para resolver repetimos o radical e efetuamos normalmente a parte de fora da raíz.
(3 + 6 - 5)√5
(9 - 5)√5
4√5
Espero ter ajudado, essa foi a forma mais simples que eu podia te explicar, bons estudos!
Para resolver esse tipo de conta precisamos simplificar os radicais, pois eles não são quadrados perfeitos ou seja não tem resultado exato.
√45
Usamos o MMC para simplificar(se um número do MMC tiver um expoente 2, você pula para fora da raíz e se ele tiver um expoente três você separa ele multiplicando com o expoente 2 + o expoente 1).
MMC(45) =
45 | 3
15-| 3
5--|5
1---|/3² × 5
√(3² × 5) = 3√5
Agora vamos resolver o MMC(20)
20| 2
10-| 2
5--| 5
1---|-/ 2² × 5
3√20 = 3√(2² × 5) = 3 . 2√5 = 6√5
E por último temos o MMC(125).
125|5
25-|5
5---|5
1----| / 5³ = 5² × 5
√125 = √(5² × 5) = 5√5
Agora só resolver operações com radicais semelhantes(radicais são os números ue tem dentro da raíz).
3√5 + 6√5 - 5√5
Lembrando que para resolver repetimos o radical e efetuamos normalmente a parte de fora da raíz.
(3 + 6 - 5)√5
(9 - 5)√5
4√5
Espero ter ajudado, essa foi a forma mais simples que eu podia te explicar, bons estudos!
Perguntas interessantes