4^x+16=17.2^x
Equação exponencial
Soluções para a tarefa
Respondido por
5
Vamos lá
4^x+16=17 • 2^x
(2²)^ x + 16 = 17 • 2^x
(2^x)² + 16= 17 • 2^x
t² + 16 = 17t
t² + 16 - 17t = 0
t² - 17t + 16 = 0
t = - ( - 17 ± √ ( - 17 ) ² - 4 • 1 • 16 / 2 • 1
t = 17 ± √ 289 - 64 / 2
t = 17 ± √ 225 / 2
t = 17 ± 15 / 2
t = 17 + 15 / 2 = 32 / 2 = 16
t = 17 - 5 / 2 = 2 / 2 = 1
t = 16
t= 1
2^x = 16
2^x = 1
2^x = 2⁴
x = 4
2^x = 1 - x = 0
x = 0
X1 = 0
X2 = 4
s { 0, 4 }
4^x+16=17 • 2^x
(2²)^ x + 16 = 17 • 2^x
(2^x)² + 16= 17 • 2^x
t² + 16 = 17t
t² + 16 - 17t = 0
t² - 17t + 16 = 0
t = - ( - 17 ± √ ( - 17 ) ² - 4 • 1 • 16 / 2 • 1
t = 17 ± √ 289 - 64 / 2
t = 17 ± √ 225 / 2
t = 17 ± 15 / 2
t = 17 + 15 / 2 = 32 / 2 = 16
t = 17 - 5 / 2 = 2 / 2 = 1
t = 16
t= 1
2^x = 16
2^x = 1
2^x = 2⁴
x = 4
2^x = 1 - x = 0
x = 0
X1 = 0
X2 = 4
s { 0, 4 }
Perguntas interessantes