Matemática, perguntado por emillyatilio, 11 meses atrás

4) Seja uma sequência, tal que:

Determine o valor dos elementos a2, a3, a4, a5 e a6 desta sequência.

a1 = 3

an = 2n + 5​

Soluções para a tarefa

Respondido por allisonaf76
6

Explicação passo-a-passo:

Algo SobreO que e aritmética, o que e progressão aritmética encontre as respostas para essas perguntas e ainda alguns exercícios de progressão aritmética.Pressione TAB e depois F para ouvir o conteúdo principal desta tela. Para pular essa leitura pressione TAB e depois F. Para pausar a leitura pressione D (primeira tecla à esquerda do F), para continuar pressione G (primeira tecla à direita do F). Para ir ao menu principal pressione a tecla J e depois F. Pressione F para ouvir essa instrução novamente.

Título do artigo:

Progressão Aritmética, PA

Paulo Marquespor: Paulo Marques

Introdução

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais ou complexos. Assim, por exemplo, o conjunto ordenado A = ( 3, 5, 7, 9, 11, ... , 35) é uma sequência cujo primeiro termo é 3, o segundo termo é 5, o terceiro termo é 7 e assim sucessivamente.

Uma sequência pode ser finita ou infinita.

O exemplo dado acima é de uma sequência finita.

Já a sequência P = (0, 2, 4, 6, 8, ... ) é infinita.

Uma sequência numérica pode ser representada genericamente na forma:

(a1, a2, a3, ... , ak, ... , an, ...) onde a1 é o primeiro termo, a2 é o segundo termo, ... , ak é o k-ésimo termo, ... , an é o n-ésimo termo. (Neste caso, k < n).

Por exemplo, na sequência Y = ( 2, 6, 18, 54, 162, 486, ... ) podemos dizer que a3 = 18, a5 = 162, etc.

São de particular interesse, as sequências cujos termos obedecem a uma lei de formação, ou seja é possível escrever uma relação matemática entre eles.

Assim, na sequência Y acima, podemos observar que cada termo a partir do segundo é igual ao anterior multiplicado por 3.

A lei de formação ou seja a expressão matemática que relaciona entre si os termos da sequência, é denominada termo geral.

Considere por exemplo a sequência S cujo termo geral seja dado por an = 3n + 5, onde n é um número natural não nulo.

Observe que atribuindo-se valores para n, obteremos o termo an (n - ésimo termo) correspondente.

Assim por exemplo, para n = 20, teremos

an = 3.20 + 5 = 65, e portanto o vigésimo termo dessa sequência (a20) é igual a 65.

Prosseguindo com esse raciocínio, podemos escrever toda a sequência S que seria:

S = ( 8, 11, 14, 17, 20, ... ).

Perguntas interessantes