4. Numa função f de em do tipo: f(x) = ax + b, ocorrem: f(-1) = 3 e f(1) = 1. Nessas condições, temos um desafio para você: represente graficamente essa função e utilize esse gráfico para descobrir quanto vale f(3).
Soluções para a tarefa
Resposta:
f(x)= -x + 2
f(3)= -1
Explicação passo a passo:
Neste caso, possuímos os pares ordenados obtidos a partir de uma expressão da função afim, e precisamos encontrar os coeficientes a e b para descobrir a equação da reta que descreve esses dois pares de pontos.
Para isso, fazemos um sistema de equações com f(x)= ax+b, então substituímos x e y na equação e montamos o sistema.
Os pares são: (3, -1) (1, 1):
-1 = 3a + b
1 = a + b .(-1) multiplicamos esta por -1 para anular o b e encontrar o a
------------------
-1 = 3a +b
-1 = -a - b
-------------------
-2 = 2a
a= -1
Agora, para descobrir b, substituímos em uma das equações:
1 = -1 + b
b= 2
Logo, a equação que descreve essa reta é:
f(x) = -x + 2
Para descobrir f(3), basta substituir:
f(3) = -3 + 2
f(3) = -1
Segue em anexo da representação gráfica da função encontrada.