Lógica, perguntado por thais3095pbtpav, 1 ano atrás

) 350 brinquedos foram dividos entre 3 crianças. A primeira recebe o dobro da segunda e a segunda o dobro da terceira. O nº de brinquedos que a segunda recebeu foi: 50 100 110 200 90

Soluções para a tarefa

Respondido por Yasmin020205
5
Para descobrir, vamos colocar os valores numa equação:

n° de brinquedos da Segunda criança= X

A primeira recebeu o dobro (2×) da Segunda (X), Entao o n° de brinquedos da Primeira = 2×X

A Segunda recebeu o dobro da Terceira, o que sugere que a Terceira recebeu Metade (÷2) da Segunda (X), Entao o n° de brinquedos da Terceira = X÷2

O total de brinquedos dados a todas as 3 crianças é 350, ou seja, n° de brinquedos da Primeira (2X) + da Segunda (X) + da Terceira (X÷2) = 350...

Assim, temos a equação:

2X + X + X÷2 = 350

Basta resolve-la!!

2X + X + X÷2 = 350
3X + X÷2 = 350

(X÷2 = metade de X = 0.5×X)

3X + 0,5X = 350

3,5X = 350

X = 350÷3,5

X = 100

O n° de brinquedos da Segunda criança = X = 100.

Alternativa B :-)

☆ Espero ter ajudado ☆
Perguntas interessantes