Matemática, perguntado por leticiaklein, 1 ano atrás

30) resolva o problema utilizando o método de completar quadrados.
Um terreno retangular possui 300 m² de área, sendo um de seus lados 5 m maior que o outro. nesse terreno, não será construído muro apenas no lado que está voltado para a rua.
Quantos metros de comprimento terá o muro construído nesse terreno?

Soluções para a tarefa

Respondido por waldekarea1
96
Completar quadrado não ajudará e não acrescentará em nada. Sinceramente, não entendi o que ele quer com isso, mas ....


Ele diz que um lado (x + 5) é maior que o outro (x). Então,

x.(x+5)=300\\x^2+5x=300\\(I)

Completando o quadrado, teríamos,

x^2+5x+\frac{25}{4}=\frac{1225}{4}\\\\(x+\frac{5}{2})^2=\frac{1225}{4} (?)

Como essa equação não ajuda, voltarei para I, então

x^2+5x-300=0\\\\x=\frac{-5+/-\sqrt{5^2-4.1.(-300)}}{2.1}=\frac{-5+/-\sqrt{1225}}{2}=\frac{-5+/-35}{2}\\\\x'=15\\x"=-20

Como não sei qual o lado esta de frente para a rua, temos,

15 + 20 + 15 = 50 m ou 20 + 15 + 20 = 65 m

Espero ter ajudado
Abraços!


Respondido por PedroHLoriato
21

Resposta:

Correção

Explicação passo-a-passo:

A resolução do amigo verificado acima está certa, porém na hora dele colocar a resposta lá nas últimas linhas ele cometeu um erro de digitação, e corrigindo esse erro, digo que não é 65 metros, mas sim 55 metros. Isso só foi uma correção para quem está buscando a resposta correta dessa pergunta hoje em dia.

Perguntas interessantes