Matemática, perguntado por Lukyo, 1 ano atrás

(30 PONTOS) Sabemos que é valida a seguinte propriedade para os somátórios:
~
\mathbf{(P1)}~~~\displaystyle\sum_{k=0}^{n}{f(k)}=\sum_{k=0}^{n}{f(n-k)}


Utilize \mathbf{(P1)} para mostrar que

S=\displaystyle\sum_{k=0}^{n}{k\dbinom{n}{k}}=n\cdot 2^{n-1}.
~

Soluções para a tarefa

Respondido por Niiya
1
Considerando f(k)=k\displaystyle\binom{n}{k},~k=0,1,...,n, temos:

\displaystyle\sum\limits_{k=0}^{n}f(k)=\sum\limits_{k=0}^{n}k\binom{n}{k}=\sum\limits_{k=0}^{n}(n-k)\binom{n}{n-k}=\sum\limits_{k=0}^{n}f(n-k)
___________________________

Porém, note que \binom{n}{k}=\binom{n}{n-k}:

\displaystyle\binom{n}{n-k}=\dfrac{n!}{(n-k)!(n-[n-k])!}\\\\\\\binom{n}{n-k}=\dfrac{n!}{(n-k)!(n-n+k)!}\\\\\\\binom{n}{n-k}=\dfrac{n!}{k!(n-k)!}\\\\\\\boxed{\boxed{\binom{n}{n-k}=\binom{n}{k}}}

Então:

\displaystyle\sum\limits_{k=0}^{n}k\binom{n}{k}=\sum\limits_{k=0}^{n}(n-k)\binom{n}{n-k}=\sum\limits_{k=0}^{n}(n-k)\binom{n}{k}\\\\\\\displaystyle\sum\limits_{k=0}^{n}k\binom{n}{k}=\sum\limits_{k=0}^{n}\left[n\binom{n}{k}-k\binom{n}{k}\right]\\\\\\\sum\limits_{k=0}^{n}k\binom{n}{k}=\sum\limits_{k=0}^{n}n\binom{n}{k}-\sum\limits_{k=0}^{n}k\binom{n}{k}\\\\\\\sum\limits_{k=0}^{n}k\binom{n}{k}+\sum\limits_{k=0}^{n}k\binom{n}{k}=n\sum\limits_{k=0}^{n}\binom{n}{k}

2\displaystyle\sum\limits_{k=0}^{n}k\binom{n}{k}=n\sum\limits_{k=0}^{n}\binom{n}{k}1^{k}1^{n-k}

Na direita, temos a expansão de um Binômio de Newton:

2^{n}=(1+1)^{n}=\displaystyle\sum\limits_{k=0}^{n}\binom{n}{k}1^{k}1^{n-k}

Logo:

2\displaystyle\sum\limits_{k=0}^{n}k\binom{n}{k}=n\cdot2^{n}\\\\\\\sum\limits_{k=0}^{n}k\binom{n}{k}=n\cdot\dfrac{2^{n}}{2}\\\\\\\boxed{\boxed{\sum\limits_{k=0}^{n}k\binom{n}{k}=n\cdot2^{n-1}}}

Lukyo: Muito bom! :-)
Perguntas interessantes