[30 pontos] Resolva em R a equação
Anexos:
Soluções para a tarefa
Respondido por
1
sen [ x + ( π/4 ) ] + cos [ x + ( π/4 ) ] = ( √2 )/2 → divida tudo por √2
( 1/√2 ).sen [ x + ( π/4 ) ] + ( 1/√2 ).cos [ x + ( π/4 ) ] = ( √2 )/2√2
[ (√2 )/2 ].sen [ x + ( π/4 ) ] + [ (√2 )/2 ].cos [ x + ( π/4 ) ] = 1/2
sen ( π/4 ).sen [ x + ( π/4 ) ] + cos ( π/4 ).cos [ x + ( π/4 ) ] = 1/2
Que equivale à:
cos [ x + ( π/4 ) ].cos ( π/4 ) + sen [ x + ( π/4 ) ].sen ( π/4 )
Recordando que cos (a).cos (b) + sen (a).sen (b) = cos ( a - b ), temos;
cos [ x + ( π/4 ) - ( π/4 ) ] = 1/2
cos ( x ) = 1/2
Como 1/2 = cos [ ( π/3 ) + 2kπ ] = sen [ ( 5π/3 ) + 2kπ ] , com k Є Z , podemos escrever:
x = ± ( π/3 ) + 2kπ, k Є Z.
R ──────► S = { x Є IR/ x = ± ( π/3 ) + 2kπ, k Є Z }
( 1/√2 ).sen [ x + ( π/4 ) ] + ( 1/√2 ).cos [ x + ( π/4 ) ] = ( √2 )/2√2
[ (√2 )/2 ].sen [ x + ( π/4 ) ] + [ (√2 )/2 ].cos [ x + ( π/4 ) ] = 1/2
sen ( π/4 ).sen [ x + ( π/4 ) ] + cos ( π/4 ).cos [ x + ( π/4 ) ] = 1/2
Que equivale à:
cos [ x + ( π/4 ) ].cos ( π/4 ) + sen [ x + ( π/4 ) ].sen ( π/4 )
Recordando que cos (a).cos (b) + sen (a).sen (b) = cos ( a - b ), temos;
cos [ x + ( π/4 ) - ( π/4 ) ] = 1/2
cos ( x ) = 1/2
Como 1/2 = cos [ ( π/3 ) + 2kπ ] = sen [ ( 5π/3 ) + 2kπ ] , com k Є Z , podemos escrever:
x = ± ( π/3 ) + 2kπ, k Є Z.
R ──────► S = { x Є IR/ x = ± ( π/3 ) + 2kπ, k Є Z }
marcosfernandeovil0d:
Agradeço! Poderia me ajudar com inequações? https://brainly.com.br/tarefa/11790989
Perguntas interessantes