3) Sabendo que a distância entre os pontos A (-2, y) e B (6, 7) é 10. Qual o valor de y?
Soluções para a tarefa
<var>d=
(x
f
−x
i
)
2
+(y
f
−y
i
)
2
</var>
\begin{gathered} < var > 10 = \sqrt{(6 - (-2))^{2} + (7-y)^{2}} \\\\ 10 = \sqrt{(6+2)^{2} + (7-y)^{2}} \\\\ 10 = \sqrt{(8)^{2} + (7-y)^{2}} \\\\ 10 = \sqrt{64 + (7-y)^{2}} \\\\ elevamos \ os \ dois \ lados \ ao \ quadrado \ para \ sumir \ com \ a \ raiz \\\\ (10)^{2} = (\sqrt{64 + (7-y)^{2}})^{2} \\\\ 100 = 64 + (7-y)^{2} \\\\ 100 = 64 + 49 - 14y + y^{2} \\\\ y^{2} - 14y + 49 + 64 - 100 = 0 \\\\ y^{2} - 14y + 13 = 0 < /var > \end{gathered}
<var>10=
(6−(−2))
2
+(7−y)
2
10=
(6+2)
2
+(7−y)
2
10=
(8)
2
+(7−y)
2
10=
64+(7−y)
2
elevamos os dois lados ao quadrado para sumir com a raiz
(10)
2
=(
64+(7−y)
2
)
2
100=64+(7−y)
2
100=64+49−14y+y
2
y
2
−14y+49+64−100=0
y
2
−14y+13=0</var>
\begin{gathered} < var > \Delta = b^{2} - 4 \cdot a \cdot c \\ \Delta = (14)^{2} - 4 \cdot (1) \cdot (13) \\ \Delta = 196 - 52 \\ \Delta = 144 < /var > \end{gathered}
<var>Δ=b
2
−4⋅a⋅c
Δ=(14)
2
−4⋅(1)⋅(13)
Δ=196−52
Δ=144</var>
\begin{gathered} < var > y = \frac{-b \pm\sqrt{\Delta} }{2 \cdot a} \\\\ y = \frac{-(-14) \pm\sqrt{144} }{2 \cdot 1} \\\\ y = \frac{14 \pm 12}{2} \\\\\\ \rightarrow y' = \frac{14 + 12}{2} \\\\ y' = \frac{26}{2} \\\\ \boxed{y' = 13} \\\\\\ \rightarrow y'' = \frac{14 - 12}{2} \\\\ y'' = \frac{2}{2} \\\\ \boxed{y'' = 1} < /var > \end{gathered}
<var>y=
2⋅a
−b±
Δ
y=
2⋅1
−(−14)±
144
y=
2
14±12
→y
′
=
2
14+12
y
′
=
2
26
y
′
=13
→y
′′
=
2
14−12
y
′′
=
2
2
y
′′
=1
</var>
\begin{gathered} < var > \therefore y \ pode \ ter \ dois \ valores: \\ \rightarrow \boxed{y = 1} \\ \rightarrow \boxed{y = 13} < /var > \end{gathered}
<var>∴y pode ter dois valores:
→
y=1
→
y=13
</var>
Portanto o ponto pode ser (-2, 1) e (-2, 13)