Matemática, perguntado por gameovernoob, 10 meses atrás

3. Encontre dois números naturais, sabendo que:
a diferença entre eles é de 4 unidades;
a diferença entre o quadrado do primeiro número e o sêxtuplo do segundo número é igual a soma
do sêxtuplo do primeiro número com 4.​

Soluções para a tarefa

Respondido por mariaceliagian
16

Resposta:

10 e 6

Explicação passo-a-passo:

Primeiro irei reunir os dados:

1º- a diferença entre eles é de 4 unidades, ou seja: X - Y = 4

2º- a diferença entre o quadrado do primeiro número e o sêxtuplo do segundo número é igual a soma  do sêxtuplo do primeiro número com 4, ou seja: X² - 6Y = 6X + 4

Resolvendo:

X - Y = 4

X = 4 + Y

X² - 6Y = 6X + 4

(4 + Y)² - 6Y = 6(4 + Y) + 4

4² + 2.4.Y + Y² - 6Y = 6.4 + 6Y + 4

16 + 8Y + Y² - 6Y = 24 + 6Y + 4

Y² + 8Y - 6Y - 6Y = 24 + 4 - 16

Y² - 4Y = 12

Y² - 4Y - 12 = 0

*resolver por bhaskara*

Δ = (-4)² - 4.1.(-12)

Δ = 16 + 48 = 64    

Y = - (-4) ± \sqrt{64} / 2

Y = 4 ± 8 / 2

Y1 = 4 + 8 / 2 = 12/2 = 6

Y2 = 4 - 8 / 2 = -4/2 = -2 (Não pode ser esse número, pois o número deve ser natural, ou seja, tem que ser positivo)

Substituindo:

X = 4 + Y

X = 4 + 6 = 10

Portanto, os dois números naturais são 10 e 6.

Espero ter ajudado!

Perguntas interessantes