2cos²x –senx -1 =0 no intervalo 0 ≤x ≤2 π
Soluções para a tarefa
Respondido por
4
2cos² x - sen x - 1 = 0
2(1 - sen² x) - sen x - 1 = 0
2 - 2sen² x - sen x - 1 = 0
- 2sen² x - sen x + 1 = 0
2sen² x + sen x - 1 = 0
sen x' = 1/2
sen x" = - 1
sen x = - 1/2
x = a + 2kπ
x = π - π/6 + 2kπ
x = 5π/6 + 2kπ
x = a + 2kπ
x = 2π - π/6 + 2kπ
x = 11π/6 + 2kπ
S = {5π/6, 11π/6}
2(1 - sen² x) - sen x - 1 = 0
2 - 2sen² x - sen x - 1 = 0
- 2sen² x - sen x + 1 = 0
2sen² x + sen x - 1 = 0
sen x' = 1/2
sen x" = - 1
sen x = - 1/2
x = a + 2kπ
x = π - π/6 + 2kπ
x = 5π/6 + 2kπ
x = a + 2kπ
x = 2π - π/6 + 2kπ
x = 11π/6 + 2kπ
S = {5π/6, 11π/6}
saulovlima36:
valeu
Perguntas interessantes