28) (M090329H6) Em uma competição esportiva participaram 34 equipes entre as modalidades de voleibol e basquetebol. Em cada equipe de voleibol, foram inscritos 12 atletas e, em cada equipe de basquetebol, 10 atletas. Os 366 atletas dessa competição participaram de apenas uma das modalidades e em apenas uma equipe. O sistema de equações que representa essa situação, considerando x como o número de equipes de voleibol e yo número de equipes de basquetebol, é X + y = 34 A) 12x – 10y = 366 x + y = |x+y = 34 B) 12x 10y = 366 X + y = 366 (12x+10y = 34 [ X + y = 34 D) 112x + 10y = 366 C) 12 BLO1M09
Soluções para a tarefa
Respondido por
14
O sistema de equações que representa essa situação é:
x + y = 34
12x + 10y = 366
Essa questão é sobre sistema de equações.
Um sistema de equações é dado por um conjunto de equações com mais de uma variável.
Do enunciado, sabemos que:
- O número total de equipes é 34;
- Cada equipe de voleibol tem 12 atletas;
- Cada equipe de basquetebol tem 10 atletas;
- Estão inscritos 366 atletas;
Seja x o número de equipes de voleibol e y o número de equipes de basquetebol, temos as seguintes equações:
x + y = 34
12x + 10y = 366
Resposta: C
ReisaCL:
obrigado vc salvou meu deia
Perguntas interessantes
Matemática,
4 meses atrás
Matemática,
4 meses atrás
Biologia,
5 meses atrás
História,
5 meses atrás
Matemática,
10 meses atrás
Português,
10 meses atrás