27) Para produzir um lote de peças, uma indústria procedeu da seguinte maneira: no primeiro dia, produziu 3/8 do total do lote; no segundo dia, produziu 3/4 das peças que faltavam; no terceiro dia, produziu 500 peças, completando assim o lote todo. O número total de peças desse lote era (A) 1 600. (B) 2 000. (C) 2 400. (D) 2 700. (E) 3 200.
GuilhermeGonçalves18:
Faltam os valores do 1º e 2º dia
Soluções para a tarefa
Respondido por
5
Sabendo que y = peças
1º dia = 3/8 x y = 300y/8 = ( 37, 5%)* de y
2º dia = [ (100-37,5 )x 3/4 x y = (46,875%)* de y
3º dia = 500 peças---> Somando as porcentagens acima, pode-se perceber que 500 peças é = 100-(37,5 + 46,875) = 15,625 %
Aplicando regra de 3 :
500 --------15, 625
y--------------100
y= 50000/15,625 = 3200 peças
1º dia = 3/8 x y = 300y/8 = ( 37, 5%)* de y
2º dia = [ (100-37,5 )x 3/4 x y = (46,875%)* de y
3º dia = 500 peças---> Somando as porcentagens acima, pode-se perceber que 500 peças é = 100-(37,5 + 46,875) = 15,625 %
Aplicando regra de 3 :
500 --------15, 625
y--------------100
y= 50000/15,625 = 3200 peças
Respondido por
4
Alternativa E.
3200 peças
Explicação passo-a-passo:
x = total de peças
Se no primeiro dia a indústria produzia 3/8 das peças, vamos calcular que fração resta a produzir.
1 - 3/8 = 8/8 - 3/8 = 5/8
Logo, ainda resta 5/8 para produzir.
No segundo dia, produziu 3/4 do resto. Ou seja, produziu:
3/4 de 5/8 = 3/4 · 5/8 = 15/32
Então, já foram produzidas 3/8 e 15/32 das peças. O total dá:
3/8 + 15/32 = 12/32 + 15/32 = 27/32
Agora, calculamos que fração das peças restou.
1 - 27/32 = 32/32 - 27/32 = 5/32
Portanto, restou 5/32 das peças para produzir. Essa fração corresponde a 500 peças. Logo:
5/32 de x = 500
5/32 · x = 500
5x = 500 · 32
x = (500 · 32)/5
x = 100 · 32
x = 3200
O número total de peças desse lote era de 3200 peças.
Perguntas interessantes
Inglês,
10 meses atrás
Inglês,
10 meses atrás
Matemática,
10 meses atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás