Matemática, perguntado por annakkkjs, 4 meses atrás

22. na figura abaixo, determine x, y, z e h. (as dimensões estão em centímetros.) ​

Anexos:

Soluções para a tarefa

Respondido por marcospaulopaulinho6
2

Explicação passo-a-passo:

bom para descobrir z usamos Pitágoras pois é um triângulo retângulo

 {a}^{2}  =  {b}^{2}  +  {c}^{2}  \\  \\  {169}^{2}  =  {156}^{2}  +  {z}^{2}  \\ 28561 = 24336 +  {z}^{2}  \\ 28561 - 24336 =  {z}^{2}  \\ 4225 =  {z}^{2}  \\ z \:  =  \sqrt{4225}  \\ z = 65

achamos Z, agora vamos descobrir o H a partir da área, tem várias forma de calcular a área e vamos utilizar a que usa base e a que usa apenas o lados

s =  \frac{65 + 169 + 156}{2}  \\ s = 195 \\  \\ a =  \sqrt{195(195 - 65)(195 - 169)(195 - 156)}  \\ a = 5070

sabemos que a área é 5070 então

[tex]b = base \\ h = altura \\ a = area \\  \\ a =  \frac{b \times h}{2}  \\ 5070 =  \frac{169 \times h}{2}  = \\ 5070 \times 2 =  169 \times h \\ 10140 = 169 \times h \\ \frac{10140}{169}  = h \\ 60 = h[/tex]

então h = 60

com isso fica mais fácil descobrir os outros usando Pitágoras

zxh

 {65}^{2}  =  {60}^{2}  +  {x}^{2}  \\  {65}^{2}  -  {60}^{2}  =  {x}^{2}  \\ 625 =  {x}^{2}  \\  \sqrt{625}  = x \\ 25 = x

x + y = 169 \\ 25 + y = 169 \\ y = 169 - 25 \\ y = 144

Perguntas interessantes