20 PONTOS! DUVIDAS DA PROVA DE AMANHÃ - ME AJUDEM
Determine a inversa de cada bijetora:
a) f(x) = 4x-1
b) f(x) = ![\sqrt[5]{x+3} \sqrt[5]{x+3}](https://tex.z-dn.net/?f=+%5Csqrt%5B5%5D%7Bx%2B3%7D+)
c) f(x) = f(x)
com x
![\frac{2}{3} \frac{2}{3}](https://tex.z-dn.net/?f=+%5Cfrac%7B2%7D%7B3%7D+)
[~],,,Só responder corretamente não precisa explicar para não tomar muito o tempo de vocês :) Responda as que você tenha certeza
Soluções para a tarefa
Respondido por
1
Sabendo que
é bijetora, logo admite inversa; segue diretamente da definição de função inversa que
![\boxed{\begin{array}{c}f\big(f^{-1}(x)\big)=x \end{array}} \boxed{\begin{array}{c}f\big(f^{-1}(x)\big)=x \end{array}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Df%5Cbig%28f%5E%7B-1%7D%28x%29%5Cbig%29%3Dx+%5Cend%7Barray%7D%7D)
(
composta com sua inversa
é a função identidade )
________________
a)![f(x)=4x-1 f(x)=4x-1](https://tex.z-dn.net/?f=f%28x%29%3D4x-1)
Logo,
![f\big(f^{-1}(x)\big)=4\,f^{-1}(x)-1\\\\ x=4\,f^{-1}(x)-1\\\\ x+1=4\,f^{-1}(x)\\\\ \therefore~~\boxed{\begin{array}{c}f^{-1}(x)=\dfrac{x+1}{4} \end{array}} f\big(f^{-1}(x)\big)=4\,f^{-1}(x)-1\\\\ x=4\,f^{-1}(x)-1\\\\ x+1=4\,f^{-1}(x)\\\\ \therefore~~\boxed{\begin{array}{c}f^{-1}(x)=\dfrac{x+1}{4} \end{array}}](https://tex.z-dn.net/?f=f%5Cbig%28f%5E%7B-1%7D%28x%29%5Cbig%29%3D4%5C%2Cf%5E%7B-1%7D%28x%29-1%5C%5C%5C%5C+x%3D4%5C%2Cf%5E%7B-1%7D%28x%29-1%5C%5C%5C%5C+x%2B1%3D4%5C%2Cf%5E%7B-1%7D%28x%29%5C%5C%5C%5C+%5Ctherefore%7E%7E%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Df%5E%7B-1%7D%28x%29%3D%5Cdfrac%7Bx%2B1%7D%7B4%7D+%5Cend%7Barray%7D%7D)
b)![f(x)=\,^{5}\!\!\!\! \sqrt{x+3} f(x)=\,^{5}\!\!\!\! \sqrt{x+3}](https://tex.z-dn.net/?f=f%28x%29%3D%5C%2C%5E%7B5%7D%5C%21%5C%21%5C%21%5C%21+%5Csqrt%7Bx%2B3%7D)
Então,
![f\big(f^{-1}(x)\big)=\,^{5}\!\!\!\!\sqrt{f^{-1}(x)+3}\\\\ x=\,^{5}\!\!\!\!\sqrt{f^{-1}(x)+3}\\\\ x^5=\big(\,^{5}\!\!\!\!\sqrt{f^{-1}(x)+3}\big)^5\\\\ x^5=f^{-1}(x)+3\\\\\ \therefore~~\boxed{\begin{array}{c}f^{-1}(x)=x^5-3 \end{array}} f\big(f^{-1}(x)\big)=\,^{5}\!\!\!\!\sqrt{f^{-1}(x)+3}\\\\ x=\,^{5}\!\!\!\!\sqrt{f^{-1}(x)+3}\\\\ x^5=\big(\,^{5}\!\!\!\!\sqrt{f^{-1}(x)+3}\big)^5\\\\ x^5=f^{-1}(x)+3\\\\\ \therefore~~\boxed{\begin{array}{c}f^{-1}(x)=x^5-3 \end{array}}](https://tex.z-dn.net/?f=f%5Cbig%28f%5E%7B-1%7D%28x%29%5Cbig%29%3D%5C%2C%5E%7B5%7D%5C%21%5C%21%5C%21%5C%21%5Csqrt%7Bf%5E%7B-1%7D%28x%29%2B3%7D%5C%5C%5C%5C+x%3D%5C%2C%5E%7B5%7D%5C%21%5C%21%5C%21%5C%21%5Csqrt%7Bf%5E%7B-1%7D%28x%29%2B3%7D%5C%5C%5C%5C+x%5E5%3D%5Cbig%28%5C%2C%5E%7B5%7D%5C%21%5C%21%5C%21%5C%21%5Csqrt%7Bf%5E%7B-1%7D%28x%29%2B3%7D%5Cbig%29%5E5%5C%5C%5C%5C+x%5E5%3Df%5E%7B-1%7D%28x%29%2B3%5C%5C%5C%5C%5C+%5Ctherefore%7E%7E%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Df%5E%7B-1%7D%28x%29%3Dx%5E5-3+%5Cend%7Barray%7D%7D)
c)![f(x)=\dfrac{x-1}{3x-2}~~~~~~\text{com }x\ne \dfrac{2}{3} f(x)=\dfrac{x-1}{3x-2}~~~~~~\text{com }x\ne \dfrac{2}{3}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cdfrac%7Bx-1%7D%7B3x-2%7D%7E%7E%7E%7E%7E%7E%5Ctext%7Bcom+%7Dx%5Cne+%5Cdfrac%7B2%7D%7B3%7D)
Portanto,
![f\big(f^{-1}(x)\big)=\dfrac{f^{-1}(x)-1}{3\,f^{-1}(x)-2}~~~~~~\text{com }f^{-1}(x)\ne \dfrac{2}{3}\\\\\\ x=\dfrac{f^{-1}(x)-1}{3\,f^{-1}(x)-2}\\\\\\ x\cdot (3\,f^{-1}(x)-2)=f^{-1}(x)-1\\\\ 3x\,f^{-1}(x)-2x=f^{-1}(x)-1\\\\ 3x\,f^{-1}(x)-f^{-1}(x)=-1+2x\\\\ (3x-1)\,f^{-1}(x)=2x-1\\\\ \therefore~~\boxed{\begin{array}{c}f^{-1}(x)=\dfrac{2x-1}{3x-1} \end{array}}~~~~~~\text{com }x\ne \dfrac{1}{3} f\big(f^{-1}(x)\big)=\dfrac{f^{-1}(x)-1}{3\,f^{-1}(x)-2}~~~~~~\text{com }f^{-1}(x)\ne \dfrac{2}{3}\\\\\\ x=\dfrac{f^{-1}(x)-1}{3\,f^{-1}(x)-2}\\\\\\ x\cdot (3\,f^{-1}(x)-2)=f^{-1}(x)-1\\\\ 3x\,f^{-1}(x)-2x=f^{-1}(x)-1\\\\ 3x\,f^{-1}(x)-f^{-1}(x)=-1+2x\\\\ (3x-1)\,f^{-1}(x)=2x-1\\\\ \therefore~~\boxed{\begin{array}{c}f^{-1}(x)=\dfrac{2x-1}{3x-1} \end{array}}~~~~~~\text{com }x\ne \dfrac{1}{3}](https://tex.z-dn.net/?f=f%5Cbig%28f%5E%7B-1%7D%28x%29%5Cbig%29%3D%5Cdfrac%7Bf%5E%7B-1%7D%28x%29-1%7D%7B3%5C%2Cf%5E%7B-1%7D%28x%29-2%7D%7E%7E%7E%7E%7E%7E%5Ctext%7Bcom+%7Df%5E%7B-1%7D%28x%29%5Cne+%5Cdfrac%7B2%7D%7B3%7D%5C%5C%5C%5C%5C%5C+x%3D%5Cdfrac%7Bf%5E%7B-1%7D%28x%29-1%7D%7B3%5C%2Cf%5E%7B-1%7D%28x%29-2%7D%5C%5C%5C%5C%5C%5C+x%5Ccdot+%283%5C%2Cf%5E%7B-1%7D%28x%29-2%29%3Df%5E%7B-1%7D%28x%29-1%5C%5C%5C%5C+3x%5C%2Cf%5E%7B-1%7D%28x%29-2x%3Df%5E%7B-1%7D%28x%29-1%5C%5C%5C%5C+3x%5C%2Cf%5E%7B-1%7D%28x%29-f%5E%7B-1%7D%28x%29%3D-1%2B2x%5C%5C%5C%5C+%283x-1%29%5C%2Cf%5E%7B-1%7D%28x%29%3D2x-1%5C%5C%5C%5C+%5Ctherefore%7E%7E%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7Df%5E%7B-1%7D%28x%29%3D%5Cdfrac%7B2x-1%7D%7B3x-1%7D+%5Cend%7Barray%7D%7D%7E%7E%7E%7E%7E%7E%5Ctext%7Bcom+%7Dx%5Cne+%5Cdfrac%7B1%7D%7B3%7D)
Bons estudos! :-)
(
________________
a)
Logo,
b)
Então,
c)
Portanto,
Bons estudos! :-)
orelhaseca:
vlw obrigado :)
Perguntas interessantes
Administração,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás