2-Um prisma heptagonal regular tem arestas da base que medem 3 cm e altura de 5 Determine a sua área lateral.
Soluções para a tarefa
Resposta:
A ideia da planificação é transformar uma figura de três dimensões em uma figura de duas dimensões. Na prática seria o equivalente a cortar sobre as arestas do prisma. Veja a seguir o exemplo de planificação de um prisma triangular.
O mesmo processo pode ser adotado para todo prisma, entretanto, veja que, à medida que aumentamos o número de lados dos polígonos da base, a tarefa fica cada vez mais difícil. Por esse motivo, faremos as generalizações com base na planificação desse polígono.
Cálculo da área lateral
Observando a imagem do prisma triangular, temos que os paralelogramos ABFC, ABFD e ACDE são as faces laterais. Note que as faces laterais de um prisma sempre serão paralelogramos independentemente do número de lados dos polígonos da base, isso acontece, pois elas são paralelas e congruentes.
Observando a figura do prisma triangular, vemos também que temos três faces laterais. Isso ocorre por conta do número de lados do polígono da base, ou seja, se as bases do prisma forem um quadrilátero, teremos quatro faces laterais, se as bases forem um pentágono, teremos cinco faces laterais, e assim sucessivamente. Dessa forma: o número de lados do polígono da base afeta a quantidade de faces laterais do prisma.
Explicação passo-a-passo:
espero ter ajudado