Matemática, perguntado por ronypereira123, 10 meses atrás

2)Um paralelepípedo reto retângulo, cuja altura mede 8 cm, tem por base um quadrado de área me- dindo 36 cm2 . Qual é a medida de sua diagonal?

Soluções para a tarefa

Respondido por luanafbh2
120

Se a base do paralelepípedo é um quadrado, a partir de sua área podemos encontrar seu lado. Sabendo que a área de um quadrado é o valor de seu lado x elevado ao expoente dois, temos:

x² = 36

x = √36

x = 6

Para encontrar a diagonal do paralelepípedo fazemos um triângulo retângulo onde a hipotenusa é a diagonal, um dos catetos é a altura e o outro é a diagonal da base. Como sabemos que a diagonal do quadrado é a medida de seu lado multiplicada por √2, chamamos a hipotenusa de d, e fazemos o Teorema de Pitágoras.

d² = 8² + (6√2)²

d² = 64 + 72

d² = 136

d = √136

d = 2√34.

Aprenda mais em:

https://brainly.com.br/tarefa/31710496

Anexos:

pekena190: Obgdoo
Respondido por weberson10
57

Resposta:

Área ABCD = 36cm²

L² = 36 cm²

L = √36cm²

L = 6 cm

DB? No ΔABD que é retângulo em

DB² = 6² + 6²

DB² = 36 +36

DB² = 72

DB² = 6√2 cm

BG? No Δ BDG que é retângulo em D

BG² = (6√2)² + 8²

BG² = 72 + 64

BG² = 136

BG = √136

BG = 2² . 2 . 17

BG = 2√34 cm diagonal do prisma

Explicação passo-a-passo:

Deixa o like e é nois

Perguntas interessantes