Matemática, perguntado por vladimir050, 1 ano atrás

2. Sabemos que o numero real C e números reais nao-nulos x, y e z, dois a dois distintos, satisfazem:
\mathsf{x + \dfrac{y}{z} +  \dfrac{z}{y} = y + \dfrac{x}{z} +  \dfrac{z}{x} = z + \dfrac{x}{y} +  \dfrac{y}{x} = C}
a) Mostre que C = -1
b) Exiba ao menos uma solução (x,y,z) para a equação dada.

Soluções para a tarefa

Respondido por carlosmath
9
\text{Primera ecuaci\'on: }\\ \\
x + \dfrac{y}{z} +  \dfrac{z}{y} = y + \dfrac{x}{z} +  \dfrac{z}{x}\\ \\ \\
x^2yz+xy^2+xz^2=xy^2z+x^2y+yz^2\\ \\ 
xyz(x-y)+xy(y-x)+z^2(x-y)=0\\ \\
(x-y)(xyz-xy+z^2)=0\\ \\
x=y~\vee~xyz-xy+z^2=0


\text{Segunda ecuaci\'on}\\ \\ 
x + \dfrac{y}{z} +  \dfrac{z}{y} =  z + \dfrac{x}{y} + \dfrac{y}{x} \\ \\ \\
x^2yz+xy^2+xz^2=xyz^2+x^2z+y^2z\\ \\
xyz(x-z)+y^2(x-z)+xz(z-x)=0\\ \\
(x-z)(xyz+y^2-xz)=0\\ \\
x=z~\vee~xyz+y^2-xz=0


\text{Tercera ecuaci\'on}\\ \\
y + \dfrac{x}{z} +  \dfrac{z}{x} = z + \dfrac{x}{y} +  \dfrac{y}{x}\\ \\ \\
xy^2z+x^2y+yz^2=xyz^2+x^2z+y^2z\\ \\
xyz(y-z)+x^2(y-z)+yz(z-y)=0\\ \\
(y-z)(xyz+x^2-yz)=0\\ \\
y=z~\vee~xyz+x^2-yz=0


\text{Como }x\neq y\neq z\text{ entonces}\\ \\
S=\begin{cases}
xyz-xy+z^2=0\\
xyz-xz+y^2=0\\
xyz-yz+x^2=0
\end{cases}\\ \\ \\
E_1:~z^2-xy=y^2-xz=x^2-yz\\ \\ 
z^2-xy=y^2-xz\\ 
x(z-y)=y^2-z^2\\ 
x=-(y+z)\\
\boxed{x+y+z=0}\\ \\
S_1: xyz-xy+z^2=0\\ \\
-(y+z)yz+(y+z)y+z^2=0\\
-y^2z-yz^2+y^2+zy+z^2=0\\
z^2(1-y)+(y-y^2)z+y^2=0\\ \\
z=\dfrac{y^2-y\pm\sqrt{(y^2-y)^2-4y^2(1-y)}}{2(1-y)}


z=\dfrac{y^2-y\pm y\sqrt{(y-1)(y+3)}}{2(1-y)}=-\dfrac{y}{2}\pm \dfrac{1}{2}y\sqrt{\dfrac{y+3}{y-1}}\\ \\ \\ 
x=-\dfrac{y}{2}\mp \dfrac{1}{2}y\sqrt{\dfrac{y+3}{y-1}}\\ \\ \\
\text{Indistintamente podemos elegir}\\ \\
z=-\dfrac{y}{2}+ \dfrac{1}{2}y\sqrt{\dfrac{y+3}{y-1}}\\ \\ \\ 
x=-\dfrac{y}{2}- \dfrac{1}{2}y\sqrt{\dfrac{y+3}{y-1}}


Luego

C=x+\dfrac{y}{z}+\dfrac{z}{y}\\ \\ \\
C=-\dfrac{y}{2}- \dfrac{1}{2}y\sqrt{\dfrac{y+3}{y-1}}+\dfrac{y}{-\dfrac{1}{2}y+ \dfrac{1}{2}y\sqrt{\dfrac{y+3}{y-1}}}+\dfrac{-\dfrac{y}{2}+ \dfrac{y}{2}\sqrt{\dfrac{y+3}{y-1}}}{y}\\ \\ \\
C=-\dfrac{y}{2}-\dfrac{y}{2}\sqrt{\dfrac{y+3}{y-1}}+\dfrac{2}{-1+ \sqrt{\dfrac{y+3}{y-1}}}-\dfrac{1}{2}+\dfrac{1}{2}\sqrt{\dfrac{y+3}{y-1}}


C=-\left(\dfrac{y+1}{2}\right)- \left(\dfrac{y-1}{2}\right)\sqrt{\dfrac{y+3}{y-1}}+\dfrac{y-1}{2}+\dfrac{y-1}{2}\sqrt{\dfrac{y+3}{y-1}}\\ \\ \\
\boxed{C=-1}\\ \\ \\
\text{La soluci\'on del sistema anterior era: }\\ \\ \\
(x,y,z)=\left(-\dfrac{y}{2}- \dfrac{y}{2}\sqrt{\dfrac{y+3}{y-1}}~,~y~,~-\dfrac{y}{2}+ \dfrac{y}{2}\sqrt{\dfrac{y+3}{y-1}}\right)\\ \\ \\
\text{Una soluci\'on puede ser haciendo }y=2\\ \\ 
(x,y,z)=\left(-1-\sqrt{5},2,-1+\sqrt{5}~\right)

vladimir050: Perfecto!!!!!!!
Perguntas interessantes