Matemática, perguntado por henrique21321, 9 meses atrás

2) Resolver as inequações exponenciais:
a) 2˟⁺⁵ ≥ 64 b) 3˟ˉ¹ ≥ 27 c) 25˟ < 5)½ d) 8˟ˉ¹≤1/16˟ e) 2˟⁺⁷<32
me ajuda ☺

Soluções para a tarefa

Respondido por crquadros
0

Resposta:

a) x ≥ 1

b) x ≥ 4

c) x < 1/4

d) x ≤ 3/7

e) x ≤ -2

Explicação passo-a-passo:

a)\ 2^{x+5}\geq64\\.\ \ \ 2^{x+5}\geq2^{6}\longrightarrow x+5\geq6,\ logo:\ x\geq6-5\Longrightarrow \boxed{x\geq\bf{1}}

b)\ 3^{x-1}\geq27\\.\ \ \ 3^{x-1}\geq3^{3}\longrightarrow x-1\geq3,\ logo:\ x\geq3+1\Longrightarrow \boxed{x\geq\bf{4}}

c)\ 25^{x}&lt;5^{\dfrac{1}{2}}\\.\ \ \ \left((5)^2\right)^{x}&lt;5^{\dfrac{1}{2}}\longrightarrow 5^{2x}&lt;5^{\dfrac{1}{2}},\ logo:\ 2x&lt;\dfrac{1}{2}, ent\~{a}o:\ \boxed{x&lt;\bf{\dfrac{1}{4}}}

d)\ 8^{x-1}\leq\dfrac{1}{16^{x}}\\\\.\ \ \left(2^3\right)^{x-1}\leq16^{-x}\\\\.\ \ \left(2^3\right)^{x-1}\leq\left(2^4\right)^{-x}\\\\.\ \ 2^{3x-3}\leq2^{-4x} \longrightarrow 3x-3\leq-4x,\ logo:\ 7x\leq\ 3 \Longrightarrow \boxed{x\leq\bf{\dfrac{3}{7}}}

e)\ 2^{x+7}\leq32\\.\ \ \ 2^{x+7}\leq2^{5}\longrightarrow x+7\leq5,\ logo:\ x\leq 5-7\Longrightarrow \boxed{x\leq\bf{-2}}

{\begin{center}\fbox{\rule{3ex}{2ex}\hspace{19.3ex}{#ESPERO TER AJUDADO !}\hspace{19.3ex}\rule{3ex}{2ex}}}{\end{center}

\fbox{{\begin{minipage}[t]{0.89\textwidth{ }}\sc{Escolha\ a\ melhor\ resposta\ entre\ as\ obtidas\ e\ voc{\^{e}}\ receber{\'{a}}\ 25\%\ dos\ pontos\ que\ voc\^{e}\ gastou\ para\ a\ sua\ pergunta.}\end{minipage}{ }}}

Perguntas interessantes