2 – Resolva as seguintes expressões numéricas:
a) (−25) + (−13) =
b) [2 + 3 x 4] ÷ 7 + 5 =
c) [(+8) + (−4)] + (−6) =
d) {[(18 + 3 x 2) ÷ 6] + 7 x 3} ÷ 5 =
Soluções para a tarefa
Resposta:
) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10g 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2= Log 5x2 =log 10 =1a) log5 + log 2=
og5 + log 2= Log