2. Para que valores de k, a equação: kx²-3x+1=0, admite raízes reais e distintas
k=4/9
k<9/4
k>4/9
k=9/4
Soluções para a tarefa
Respondido por
0
A equação admite raízes reais e distintas quando ∆>0
Respondido por
0
Explicação passo-a-passo:
Sabemos que para a equação ter raízes reais e distintas o ∆>0. (Delta Maior que Zero).
Sabemos também que o Valor do Delta dar-se-à por:
∆=b^2-4.a.c Logo temos que:
- a=k
- b=-3
- c=1
∆ = (-3)^2-4.k.1
∆ = 9-4k (Esse valor tem que ser Maior que zero) Logo:
9-4k > 0
-4k>-9
9>4k
4k<9
k<9/4
Logo: para ter raízes reais ele distintas k<9/4.
att:@almizaelsouza.
Perguntas interessantes