Biologia, perguntado por danielisaquemachado, 1 ano atrás


2)O que é classificação?

Soluções para a tarefa

Respondido por giovanna121224
0

Resposta:

Classificação é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos e são utilizados em Sensoriamento Remoto para mapear áreas da superfície terrestre que correspondem aos temas de interesse.

Explicação:

A informação espectral de uma cena pode ser representada por uma imagem espectral, na qual cada "pixel" tem coordenadas espaciais x, y e uma espectral L, que representa a radiância do alvo em todas as bandas espectrais, ou seja para uma imagem de K bandas, existem K níveis de cinza associados a cada "pixel" sendo um para cada banda espectral. O conjunto de características espectrais de um "pixel" é denotado pelo termo atributos espectrais.

Os classificadores podem ser divididos em classificadores "pixel a pixel" e classificadores por regiões.

Classificadores "pixel a pixel": Utilizam apenas a informação espectral de cada pixel para achar regiões homogêneas. Estes classificadores podem ser separados em métodos estatísticos (utilizam regras da teoria de probabilidade) e determinísticos (não utilizam probabilidade).

Classificadores por regiões: Utilizam, além de informação espectral de cada "pixel", a informação espacial que envolve a relação com seus vizinhos. Procuram simular o comportamento de um foto-intérprete, reconhecendo áreas homogêneas de imagens, baseados nas propriedades espectrais e espaciais de imagens. A informação de borda é utilizada inicialmente para separar regiões e as propriedades espaciais e espectrais irão unir áreas com mesma textura.

O resultado da classificação digital é apresentado por meio de classes espectrais (áreas que possuem características espectrais semelhantes), uma vez que um alvo dificilmente é caracterizado por uma única assinatura espectral. É constituído por um mapa de "pixels" classificados, representados por símbolos gráficos ou cores, ou seja, o processo de classificação digital transforma um grande número de níveis de cinza em cada banda espectral em um pequeno número de classes em uma única imagem.

As técnicas de classificação aplicadas apenas a um canal espectral (banda da imagem) são conhecidas como classificações unidimensionais. Quando o critério de decisão depende da distribuição de níveis de cinza em vários canais espectrais as técnicas são definidas como de classificação multiespectral.

O primeiro passo em um processo de classificação multiespectral é o treinamento. Treinamento é o reconhecimento da assinatura espectral das classes. Existem basicamente duas formas de treinamento: supervisionado e não-supervisionado.

Quando existem regiões da imagem em que o usuário dispõe de informações que permitem a identificação de uma classe de interesse, o treinamento é dito supervisionado. Para um treinamento supervisionado o usuário deve identificar na imagem uma área representativa de cada classe. É importante que a área de treinamento seja uma amostra homogênea da classe respectiva, mas ao mesmo tempo deve-se incluir toda a variabilidade dos níveis de cinza. Recomenda-se que o usuário adquira mais de uma área de treinamento, utilizando o maior número de informações disponíveis, como trabalhos de campo, mapas, etc. Para a obtenção de classes estatisticamente confiáveis, são necessários de 10 a 100 "pixels" de treinamento por classe. O número de "pixels" de treinamento necessário para a precisão do reconhecimento de uma classe aumenta com o aumento da variabilidade entre as classes.

Espero ter ajudado! Bons estudos!

Perguntas interessantes