2) O pH da água é tão importante que durante o processo ele é corrigido 2 vezes. Assim, para entender melhor como ocorre a interação entre os íons OH- e H+, observe no simulador uma solução de 400 mL de café e 600 mL de água. A concentração de H+ no café é de 10-5 mol/L, resultando após a diluição uma solução de concentração de H+ de 4,0.10-6 mol/L, ou seja, pH=5,4. Se adicionarmos em água uma solução 0,75 mol/L de composto que se dissocia apenas 8%, liberando OH-, qual o pH final?
Soluções para a tarefa
Resposta:
Tentei aqui e o pH deu 4,4.
Bem, vamos lá.
AVISO --> Vou TENTAR responder. Não quer dizer que esteja certa.
Solução Inicial --> Vi = 400mL e pH1 = 4,00
+
Água --> Vadicionado = 600mL
=
Solução FInal --> Vf = 1000mL e pHf =?
Para solução tem-se que encontrar a concentração de [H+], podemos resolver isso pela equação do pH mesmo: (*i significa solução inicial)
pHi = - log [H+]i
10^(-pHi) = [H+]i
10^(-4) = [H+]i
Encontrando a concentraçao de [H+]i, podemos entra através da equação Ci.Vi = Cf.Vf, achar a concentração [H+]f, assim teremos que:
Ci.Vi = Cf.Vf
10^(-4). 400mL = Cf.1000mL
Cf = 4x10^(-5) = [H+]f
Aplicando a equaçao novamente de pH, chegaremos a:
pHf = - log [H+]f
pHf = - log (4x10^(-5))
pHf = 4,40
boa sorte!
o ph final é :
pH = - log ( 4,0 × 10-⁵ )
pH = 4,40
espero ter ajudado ♡
Grau de ionização (α) = 8% ou 0,08
[OH-] = M. Α
[OH-] = 0,75. 0,08
[OH-] = 0,06 ou 6.10-2 mol/L
pOH = -log [H+]
pOH = -log 6.10-2
pOH = 2- log 6
pOH = 2-0,78
pOH =1,22
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 1,22
pH = 12,78