Matemática, perguntado por laismariaribeip766hn, 9 meses atrás

2) O grafico abaixo mostra a evolução de um ciclista Podemos observar que 2 segundos apos 4
iniciar a corrida ele ja tinha alcançado 10 metros. E com 4 segundos tinha percorrido 20
metros. Marque abaixo quais os espaços percorridos pelo ciclista nos tempos de 8 e 12
segundos, respectivamente
5 pontos
50
04-
20
10+
A. 40 e 60 metros
B. 30 e 70 metros
C. 40 e 55 metros
D. 50 e 60 metros​

Anexos:

Soluções para a tarefa

Respondido por jhullysampaio64
1

Resposta:

D

Explicação passo-a-passo:

O valor do T indica no grafico e a distancia percorrida d, com movimento acelerado, sao 4,0 e 25 m, respectivamente.

O primeiro a se fazer e *analisar* o que o *grafico* esta telacionado. Observe os eixos x e y, vemos que se trata de um grafico *Velocidade* *(m/s) x tempo(s)

O proximo posso é entender o que a questao pede. Duas coisas sao perdidas:o valor de T e a diatancia percorida com movimento acelerado.

  1. Voltando al grafico, notamos que no tempo de T=0 a T, a velocidade esta aumentado linearmente. Esse comportamento num grafico V xT e característico de um movimento uniformemente variado (M. U. V), onde a velocidade varia devido uma aceleracao constante.

jhullysampaio64: Denada
jhullysampaio64: Se precisar de ajuda me chama
jhullysampaio64: Tah
Respondido por Socraw
0

R.: Letra A.

Em 8 s , no gráfico, claramente,

percebe-se que se encontrava

no espaço de 40m. A questão é :

Letra A ou C ?

Bom , descubra a função do

gráfico, usando os seguintes

pontos : (2,10) e (4,20) . Lem-

brando que qualquer ponto

seria válido.

y = ax + b // (2,10)

10 = 2a + b

y=ax + b // (4,20)

20 = 4a + b

Monte um sitema com equações

achadas e resolvas.

2a + b = 10

4a + b = 20

2a + b = 10 (-1)

4a + b = 20

-2a - b = - 10

4a + b = 20

2a = 10

a = 5

4a + b = 20

4.5 + b = 20

20 + b = 20

b = 0

Monte a função.

y = ax + b

y = 5x + 0

y = 5x

( x é o tempo e y ,o espaço)

Então em 12s :

y = 5x , para x = 12

y = 5.12

y = 60m

Logo , Letra A.

Perguntas interessantes