Matemática, perguntado por mateus150foda, 6 meses atrás

2) Localizados no plano cartesiano, os pontos A(1,-1): B(3-1): C(3:3) e D(1:3) são os vértices de um retângulo. Então o perímetro deste retângulo é igual a? a) 8 b) 6 c) 12 d) 24​

Soluções para a tarefa

Respondido por auditsys
0

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{d_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}}

\mathsf{d_{AB} = \sqrt{(1 - 3)^2 + (-1 - (-1))^2}}

\mathsf{d_{AB} = \sqrt{(1 - 3)^2 + (-1 + 1)^2}}

\mathsf{d_{AB} = \sqrt{(-2)^2 + (0)^2}}

\mathsf{d_{AB} = \sqrt{4 + 0}}

\mathsf{d_{AB} = \sqrt{4}}

\mathsf{d_{AB} = 2}

\mathsf{d_{BC} = \sqrt{(x_B - x_C)^2 + (y_B - y_C)^2}}

\mathsf{d_{BC} = \sqrt{(3 - 3)^2 + (-1 - 3)^2}}

\mathsf{d_{BC} = \sqrt{(0)^2 + (-4)^2}}

\mathsf{d_{BC} = \sqrt{0 + 16}}

\mathsf{d_{BC} = \sqrt{16}}

\mathsf{d_{BC} = 4}

\mathsf{d_{CD} = \sqrt{(x_C - x_D)^2 + (y_C - y_D)^2}}

\mathsf{d_{CD} = \sqrt{(3 - 1)^2 + (3 - 3)^2}}

\mathsf{d_{CD} = \sqrt{(2)^2 + (0)^2}}

\mathsf{d_{CD} = \sqrt{4 + 0}}

\mathsf{d_{CD} = \sqrt{4}}

\mathsf{d_{CD} = 2}

\mathsf{d_{DA} = \sqrt{(x_D - x_A)^2 + (y_D - y_A)^2}}

\mathsf{d_{DA} = \sqrt{(1 - 1)^2 + (3 - (-1))^2}}

\mathsf{d_{DA} = \sqrt{(1 - 1)^2 + (3 + 1)^2}}

\mathsf{d_{DA} = \sqrt{(0)^2 + (4)^2}}

\mathsf{d_{DA} = \sqrt{0 + 16}}

\mathsf{d_{DA} = \sqrt{16}}

\mathsf{d_{DA} = \sqrt{4}}

\mathsf{P = d_{AB} + d_{BC} + d_{CD} + d_{DA}}

\mathsf{P = 2 + 4 + 2 + 4}

\boxed{\boxed{\mathsf{P = 12}}}\leftarrow\textsf{letra C}

Perguntas interessantes