Matemática, perguntado por nickk26, 1 ano atrás

2) Determine os valores de m para que as funções do 2º grau tenham:
Duas raízes reais e distintas A>0
Duas raízes reais iguais A=0
Não tenha raizes reais A20
a) f(x) = (m - 1)x2 + (2m +3)x + m
ya
b)f(x) = (m + 2)x2 + (3 - 2m)x + (m-1)

Soluções para a tarefa

Respondido por CyberKirito
4

a) f(x) =(m-1)x²+(2m+3)x+m

∆=(2m+3)²-4.(m-1).m

∆=4m²+12m+9-4m²+4m

∆=16m+9

Raízes reais e distintas →∆>0

16m + 9  >  0 \\ 16m  > - 9 \\ m  >  -  \frac{9}{16}

Raízes reais e iguais →∆=0

16m + 9 = 0 \\ m =  -  \frac{16}{9}

Não tem raiz real →∆<0

16m + 9 &lt; 0 \\ m &lt;  -  \frac{9}{16}

b)f(x)=(m+2)x²+(3-2m)x+(m-1)

∆=(3-2m)²-4.(m+2)(m-1)

∆=9-12m+4m²-4(m²-m+2m-2)

∆=9-12m+4m²-4(m²+m-2)

∆=9-12m+4m²-4m²-4m+8

∆= -16m+17

Raízes reais e distintas →∆>0

 - 16m + 17 &gt; 0 \\  - 16m &gt;  - 17  \times ( - 1) \\ 16m &lt; 17 \\ m &lt;  \frac{17}{6}

Raízes reais e iguais →∆=0

 - 16m + 17 = 0 \\ 16m = 17 \\ m =  \frac{17}{16}

Não tem raiz real →∆<0

 - 16m + 17 &lt; 0 \\  - 16m &lt;  - 17 \times ( - 1) \\ 16m &gt; 17 \\ m &gt;  \frac{17}{16}

Perguntas interessantes