Matemática, perguntado por raissaandrade27, 6 meses atrás

2 Determine a razão das seguintes PG a) (20. 10.3) b) (3.6.12.24) c) 02.-8.32) ​

Soluções para a tarefa

Respondido por Skoy
3

Para que possamos encontrar a razão de qualquer P.G devemos dividir o segundo termo pelo primeiro termo da mesma. Veja:

\large\begin{array}{lr} \sf a)\ (20 , 10, 3\  ... )\\\\\sf q=\dfrac{10}{20}\\\\\sf \underline{\boxed{\red{\sf q= \frac{1}{2}  }}}\end{array}

Mas perceba que se formos conferir a P.G termos:

\large\begin{array}{lr} \sf a)\ (20 , 10, 3\  ... )\\\\\sf 20*\dfrac{1}{2} * \dfrac{1}{2}  \\\\\sf \underline{\boxed{\red{\sf = 5}}}\end{array}

Perceba que o terceiro termo da sua P.G tem que ser obrigatoriamente igual à 5, como o termo é diferente de 5 concluirmos que o item A não é uma P.G.

____________#_____________

\large\begin{array}{lr} \sf b)\ (3, 6,12,24)\\\\\sf q=\dfrac{6}{3}\\\\\sf \underline{\boxed{\red{\sf q= 2  }}}\end{array}

Mas perceba que se formos conferir a P.G termos:

\large\begin{array}{lr} \sf b)\ (3, 6,12,24)\\\\\sf 3*2*2*2\\\\\sf \underline{\boxed{\red{\sf = 24  }}}\end{array}

Portanto a razão da P.G é igual a 2.

____________#_____________

\large\begin{array}{lr} \sf b)\ (2,-8,32)\\\\\sf q=\dfrac{-8}{2}\\\\\sf \underline{\boxed{\red{\sf q= -4 }}}\end{array}

Mas perceba que se formos conferir a P.G termos:

\large\begin{array}{lr} \sf c)\ (2,-8, 32)\\\\\sf 2*(-4)*(-4)\\\\\sf \underline{\boxed{\red{\sf = 32  }}}\end{array}

Portanto a razão da P.G é igual a -4.

____________#_____________

Concluirmos então que:

A => Não é uma P.G

B => É uma P.G e sua razão é igual a 2.

C => É uma P.G e sua razão é igual a -4.

Espero ter ajudado.

Bons estudos.

  • Att. FireClassis.
Anexos:
Perguntas interessantes