Matemática, perguntado por gabi8559, 6 meses atrás

2) Dadas as expressões algébricas, 2x; 5x²+3x-1; x³-7x² e 6x³+2x²-9x+2, qual é a nomenclatura da esquerda para direita respectivamente:

Soluções para a tarefa

Respondido por Usuário anônimo
1

Resposta:

2x; 5x^2+3x-1; x^3-7x^2\\\\\mathrm{Encontrar\:o\:minimo\:multiplo\:comum\:de\:}2x,\:5x^2+3x-1,\:x^3-7x^2\\\\\mathrm{Fatorar\:}2x\\\\2\cdot \:x\\\\x^3-7x^2\\\\=xx^2-7x^2\\\\=x^2\left(x-7\right)\\\\2\cdot \left(5x^2+3x-1\right)\cdot \:x^2\cdot \left(x-7\right)\\\\\\6x^3+ 2x^2-9x+2

\mathrm{Maximo}\left(-\frac{2+166^{\frac{1}{2}}}{18},\:\frac{247+83\cdot \:166^{\frac{1}{2}}}{243}+2\right)\\\\\mathrm{Minimo}\left(\frac{-2+166^{\frac{1}{2}}}{18},\:\frac{247-83\cdot \:166^{\frac{1}{2}}}{243}+2\right)\\\\\mathrm{Maximo}\left(-\frac{2+166^{\frac{1}{2}}}{18},\:\frac{247+83\cdot \:166^{\frac{1}{2}}}{243}+2\right)\\\\\mathrm{Minimo}\left(\frac{-2+166^{\frac{1}{2}}}{18},\:\frac{247-83\cdot \:166^{\frac{1}{2}}}{243}+2\right)\\\\

\mathrm{Maximo}\left(-\frac{2+166^{\frac{1}{2}}}{18},\:\frac{247+83\cdot \:166^{\frac{1}{2}}}{243}+2\right),\:\mathrm{Minimo}\left(\frac{-2+166^{\frac{1}{2}}}{18},\:\frac{247-83\cdot \:166^{\frac{1}{2}}}{243}+2\right)

Perguntas interessantes