2-Calcule o número binomial:
Anexos:
Soluções para a tarefa
Respondido por
5
(5 3)=5!/3! (5-3)!
(5 3)=5!/3! 2!
(5 3)=5.4.3!/3! 2! → Eliminar 3!
(5 3)=20/2
(5 3)=10
Respondido por
0
Resposta:
10.
Explicação passo-a-passo:
Entendimento de fatorial ( ! ):
n! = n . (n-1)! . (n-2)! ...
exemplos:
4! = 4 . 3 . 2 . 1 = 24
5! = 5 . 4 . 3 . 2 . 1 = 120
Nomenclatura:
n: sempre sendo o número de cima, chamado de "numerador".
p: sempre sendo o número debaixo, chamado de "classe".
Fórmula:
( n,p ) = n! / p! . (n-p)!
Aplicação da fórmula:
( 5,3 ) = 5! / 3! . (5-3)!
5 . 4 . 3! / 3! . 2! ( "abrir" o fatorial, como por exemplo: [3! = 3.2.1 = 6] é igual a [3! = 3.2! = 6] ).
Corta-se o "3!" do numerador com o outro "3!" da classe:
5 . 4 / 2!
5 . 4 / 2 . 1
20 / 2 = 10
Perguntas interessantes
Ed. Moral,
8 meses atrás
Matemática,
8 meses atrás
Biologia,
11 meses atrás
Português,
11 meses atrás
Matemática,
1 ano atrás
Português,
1 ano atrás