Matemática, perguntado por gabriel1809br, 7 meses atrás

2) A área do triângulo retângulo que possui base medindo 5 cm e hipotenusa medindo 13 cm é igual a: *
A) 30 cm²
B) 60 cm²
C) 16 cm²
D) 12 cm²

5) A equação 3x² - 5x + 8 =0: *
A) Possui 3 raízes diferentes
B) Possui 2 raízes iguais
C) Possui 2 raízes diferentes
D) Não possui raízes

Anexos:

Soluções para a tarefa

Respondido por eskm
2

Resposta:

Explicação passo-a-passo:

2) A área do triângulo retângulo que possui base medindo 5 cm e hipotenusa medindo 13 cm é igual a: *

I

I c =  = h altura          ( a = hipotenusa = 13cm)

I

I__________________

b=  base = 5cm

TEOREMA  de PITAGORAS  ( fórmula)

a² = b² + c²   ( por os valores de CADA UM)

(13)² = (5)² + h²

13 x 13 = 5x5 + h²

 169    = 25  + h²  mesmo que

25 + h² =169

h² = 169 - 25

h² = 144 =====>(²) = (√)

h = √144  ================> √144 = √12x12 =12

h = 12 ( altura = 12 cm)

assim

base = 5cm

altura = 12cm

FÓRMULA da Area do triangulo

               base x altura

Area = -------------------------

                      2

            (5 cm)(12cm)

Area = ----------------------

                      2

             60 cm²

Area = -------------

              2

Area = 30 cm²

A) 30 cm²   ( resposta)

B) 60 cm²

C) 16 cm²

D) 12 cm²

5) A equação

equação 2º grau

ax² + bx + c = 0

3x² - 5x + 8 =0:

a = 3

b = - 5

c = 8

Δ = b² - 4ac

Δ =    (-5)² - 4(3)(8)

Δ = + 5x5 - 96

Δ = + 25 - 96

Δ = - 71

se

Δ < 0  Não Existe RAIZ REAL

(porque??)

√Δ = √-71  ( raiz quadrada)  com número NEGATIVO

A) Possui 3 raízes diferentes

B) Possui 2 raízes iguais

C) Possui 2 raízes diferentes

D) Não possui raízes ( resposta)

Anexos:

gabriel1809br: Obrigado <3
Respondido por juscelinocmene
1

Resposta:

2) A área do triângulo retângulo que possui base medindo 5 cm e hipotenusa medindo 13 cm é igual a:

A) 30 cm²

5) A equação 3x² - 5x + 8 =0:  

D) Não possui raízes

Explicação passo-a-passo:

2) Sabemos que a área de um triângulo é dada por \frac{base *altura}{2}, nesse caso temos apenas o valor da base (5cm), precisamos encontrar o valor da altura. Para isso, vamos usar o Teorema de Pitágoras (a²= b² + c²), onde o a representa a hipotenusa e b, c os catetos.

Dessa forma, temos:

a^{2} =b^{2} +c^{2}

13^{2} =5^{2} +c^{2}

169=25+c^{2}

169-25=c^{2}

144=c^{2}

\sqrt{144} =c

12=c

Logo, descobrimos o valor do outro cateto do triângulo que corresponde a sua altura, agora temos os valores necessários para calcular sua área:

A=\frac{b*h}{2}

A=\frac{5*12}{2}

A=\frac{60}{2}

A=30

5) Podemos saber a quantidades de raízes de uma equação do 2º grau calculando o seu discriminante, o delta (Δ):

Se o Δ for maior que zero, temos duas raízes Reais diferente;

Se o Δ for igual a zero, temos duas raízes Reais iguais;

Se o Δ for menor que zero (um número negativo), não possui raízes dentro do conjunto dos números Reais.

Vamos então calcular o Δ da nossa equação:

3x² - 5x + 8 =0

a= 3

b= -5

c= 8

Δ= b²-4*a*c

Δ= (-5)²-4*3*8

Δ= 25 -12*8

Δ= 25 -96

Δ= -71

Logo, como o nosso Δ é menor que zero, não possui raízes.

Perguntas interessantes