Matemática, perguntado por Usuário anônimo, 1 ano atrás

1º Escreva o sistema associado a cada equação matricial e resolva-o

a) ( 1 1 ) ( x ) ( 10 )         ( 1 1 1 ) ( x ) ( 6 )
( 0 1 ) . ( y ) = ( 8 )      b) ( 0 1 1 ) ( y ) ( 5 )
( 0 0 1) . ( z ) = ( 3 )

2º Calcule K para que (1,2,k) seja a solução de:

( 2 -1 -1 ) ( x ) ( -k )
( 1 1 2 ) ( y ) ( k² + 3 )
( 3 2 -5 ) . ( z ) = ( 7 )

Soluções para a tarefa

Respondido por Usuário anônimo
24
Bom dia!

Solução!

Para resolver esse exercício você pode substituir os pontos nos sistema e igualar a zero ,ou resolves o sistema.

20)

\begin{pmatrix} 
  1 & 1&1 \\ 
  1&-1&2 \\
  \end{pmatrix}.\begin{bmatrix} 
  x  \\ 
 y  \\ 
 z \\
  \end{bmatrix}=\begin{pmatrix} 
  0 \\ 
  0 \\
  \end{pmatrix}\\\\\\\\\
\begin{cases}
x+y+z=0\\
x-y+2z=0
\end{cases}\\\\\\\\\

\begin{cases}
0+0+0=0\\
0-0+2.(0)=0
\end{cases}\\\\\\\\\

\boxed{Resposta:~~Terno~~ordenado~~(0,0,0)~~\boxed{Alternativa B}}



21)

Sendo~~o~~ponto~~~~(1+m,2),perceba~~que~~e~~uma~~coordenada,\\\\\
basta~~substituir~~no ~~sistema~~para~~determinar~~o valor~~de~~m.\\\\\\\\\\\
\begin{cases}
x+y=5\\
2x-3y=0
\end{cases}\\\\\\\
\begin{cases}
1+m+2=5\\
2(1+m)-3(2)=0
\end{cases}\\\\\\\
\begin{cases}
1+m+2=5\\
2+2m-6=0
\end{cases}\\\\\\\

m+2m+1+2-6+2=5\\\\\
3m-6+5=5\\\\
3m-1=5\\\\\
3m=5+1\\\\\
3m=6\\\\\
m= \dfrac{6}{3}\\\\\\
\boxed{m=2}


22)

A)\\\\\
\begin{pmatrix} 
  1 & 1 \\ 
  0 & 1 \\
  \end{pmatrix}.\begin{bmatrix} 
  x  \\ 
 y  
  \end{bmatrix}=\begin{pmatrix} 
  10 \\ 
 8 
  \end{pmatrix}\\\\\\\
Sistema~~associado!\\\\\\\\
\begin{cases}
x+y=10\\
0x+y=8
\end{cases}\\\\\\
\boxed{y=8}\\\\\
x+8=10\\\\\
x=10-8\\\\\
\boxed{x=2}\\\\\\
\boxed{Resposta:~~S=\{2,8\}}


b)\\\\\
\begin{pmatrix} 
  1 & 1&1 \\ 
  0 & 1&1 \\
0&0&1
  \end{pmatrix}.\begin{bmatrix} 
  x  \\ 
y  \\ 
  z  \\
  \end{bmatrix}= \begin{pmatrix} 
  6 \\ 
  5 \\ 
3\\
  \end{pmatrix}\\\\\\\
Sistema~~associado!\\\\\\
\begin{cases}
x+y+z=6\\
~~~~~y+z=5\\
~~~~~~~~~~z=3


\end{cases}\\\\\\\

Veja,z~~e~~igual~~a~~tres,basta~~ir~~fazendo~~a~~substituic\~ao\\\\\
para~~determinar~~as~~outras~~variaveis.\\\\\
z=3\\\\\\\\
y+z=5\\\\
y+3=5\\\\\
y=5-3\\\\\
\boxed{y=2}

x+y+z=6\\\\\
x+2+3=6\\\\\
x+5=6\\\\\
x=6-5\\\\
\boxed{x=1}\\\\\\\
\boxed{Resposta:~~S=\{1,2,3\}}

23)
Ponto~~(1,2,k)~~so~~substiuir~~e~~determinar~~k.

 \begin{pmatrix} 
  2 & -1&-1 \\ 
  1 & 1&2 \\
3&2&-5
  \end{pmatrix}.\begin{bmatrix} 
  x \\ 
 y \\ 
  z  \\
  \end{bmatrix}= \begin{pmatrix} 
  -k  \\ 
  k^{2}+3  \\
7
  \end{pmatrix}


Sistema~~associado!\\\\\\\\\ \begin{cases} 2x-y-z=-k\\ x+y+2z=k^{2}+3\\ 3x+2y-5z=7 \end{cases}\\\\\\\\ Com~~o~~sistema~~montado~~substituir~~o~~ponto\\\\\\\ P(1,2,k)\\\\\ II)\\\\\\ x+y+2z=k^{2}+3\\\\\\ 1+2+2k=k^{2}+3\\\\\ 3+2k=k^{2}+3\\\\\\ k^{2}-2k=0\\\\ k(k-2)=0\\\\ k=0\\\\\\ k=2\\\\\\\boxed{k=0}\\\\\\\ \boxed{Resposta:~~k=0}

Bom dia!
Bons estudos!

Perguntas interessantes