1º Escreva o sistema associado a cada equação matricial e resolva-o
a) ( 1 1 ) ( x ) ( 10 ) ( 1 1 1 ) ( x ) ( 6 )
( 0 1 ) . ( y ) = ( 8 ) b) ( 0 1 1 ) ( y ) ( 5 )
( 0 0 1) . ( z ) = ( 3 )
2º Calcule K para que (1,2,k) seja a solução de:
( 2 -1 -1 ) ( x ) ( -k )
( 1 1 2 ) ( y ) ( k² + 3 )
( 3 2 -5 ) . ( z ) = ( 7 )
Soluções para a tarefa
Respondido por
24
Bom dia!
Solução!
Para resolver esse exercício você pode substituir os pontos nos sistema e igualar a zero ,ou resolves o sistema.
20)
![\begin{pmatrix}
1 & 1&1 \\
1&-1&2 \\
\end{pmatrix}.\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}=\begin{pmatrix}
0 \\
0 \\
\end{pmatrix}\\\\\\\\\
\begin{cases}
x+y+z=0\\
x-y+2z=0
\end{cases}\\\\\\\\\
\begin{cases}
0+0+0=0\\
0-0+2.(0)=0
\end{cases}\\\\\\\\\
\boxed{Resposta:~~Terno~~ordenado~~(0,0,0)~~\boxed{Alternativa B}}
\begin{pmatrix}
1 & 1&1 \\
1&-1&2 \\
\end{pmatrix}.\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}=\begin{pmatrix}
0 \\
0 \\
\end{pmatrix}\\\\\\\\\
\begin{cases}
x+y+z=0\\
x-y+2z=0
\end{cases}\\\\\\\\\
\begin{cases}
0+0+0=0\\
0-0+2.(0)=0
\end{cases}\\\\\\\\\
\boxed{Resposta:~~Terno~~ordenado~~(0,0,0)~~\boxed{Alternativa B}}](https://tex.z-dn.net/?f=%5Cbegin%7Bpmatrix%7D+%0A++1+%26amp%3B+1%26amp%3B1+%5C%5C+%0A++1%26amp%3B-1%26amp%3B2+%5C%5C%0A++%5Cend%7Bpmatrix%7D.%5Cbegin%7Bbmatrix%7D+%0A++x++%5C%5C+%0A+y++%5C%5C+%0A+z+%5C%5C%0A++%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bpmatrix%7D+%0A++0+%5C%5C+%0A++0+%5C%5C%0A++%5Cend%7Bpmatrix%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ax%2By%2Bz%3D0%5C%5C%0Ax-y%2B2z%3D0%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Bcases%7D%0A0%2B0%2B0%3D0%5C%5C%0A0-0%2B2.%280%29%3D0%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%0A%5Cboxed%7BResposta%3A%7E%7ETerno%7E%7Eordenado%7E%7E%280%2C0%2C0%29%7E%7E%5Cboxed%7BAlternativa+B%7D%7D%0A%0A%0A%0A%0A)
21)
![Sendo~~o~~ponto~~~~(1+m,2),perceba~~que~~e~~uma~~coordenada,\\\\\
basta~~substituir~~no ~~sistema~~para~~determinar~~o valor~~de~~m.\\\\\\\\\\\
\begin{cases}
x+y=5\\
2x-3y=0
\end{cases}\\\\\\\
\begin{cases}
1+m+2=5\\
2(1+m)-3(2)=0
\end{cases}\\\\\\\
\begin{cases}
1+m+2=5\\
2+2m-6=0
\end{cases}\\\\\\\
m+2m+1+2-6+2=5\\\\\
3m-6+5=5\\\\
3m-1=5\\\\\
3m=5+1\\\\\
3m=6\\\\\
m= \dfrac{6}{3}\\\\\\
\boxed{m=2} Sendo~~o~~ponto~~~~(1+m,2),perceba~~que~~e~~uma~~coordenada,\\\\\
basta~~substituir~~no ~~sistema~~para~~determinar~~o valor~~de~~m.\\\\\\\\\\\
\begin{cases}
x+y=5\\
2x-3y=0
\end{cases}\\\\\\\
\begin{cases}
1+m+2=5\\
2(1+m)-3(2)=0
\end{cases}\\\\\\\
\begin{cases}
1+m+2=5\\
2+2m-6=0
\end{cases}\\\\\\\
m+2m+1+2-6+2=5\\\\\
3m-6+5=5\\\\
3m-1=5\\\\\
3m=5+1\\\\\
3m=6\\\\\
m= \dfrac{6}{3}\\\\\\
\boxed{m=2}](https://tex.z-dn.net/?f=Sendo%7E%7Eo%7E%7Eponto%7E%7E%7E%7E%281%2Bm%2C2%29%2Cperceba%7E%7Eque%7E%7Ee%7E%7Euma%7E%7Ecoordenada%2C%5C%5C%5C%5C%5C%0Abasta%7E%7Esubstituir%7E%7Eno+%7E%7Esistema%7E%7Epara%7E%7Edeterminar%7E%7Eo+valor%7E%7Ede%7E%7Em.%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ax%2By%3D5%5C%5C%0A2x-3y%3D0%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0A1%2Bm%2B2%3D5%5C%5C%0A2%281%2Bm%29-3%282%29%3D0%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0A1%2Bm%2B2%3D5%5C%5C%0A2%2B2m-6%3D0%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%0A%0Am%2B2m%2B1%2B2-6%2B2%3D5%5C%5C%5C%5C%5C%0A3m-6%2B5%3D5%5C%5C%5C%5C%0A3m-1%3D5%5C%5C%5C%5C%5C%0A3m%3D5%2B1%5C%5C%5C%5C%5C%0A3m%3D6%5C%5C%5C%5C%5C%0Am%3D+%5Cdfrac%7B6%7D%7B3%7D%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7Bm%3D2%7D+)
22)
![A)\\\\\
\begin{pmatrix}
1 & 1 \\
0 & 1 \\
\end{pmatrix}.\begin{bmatrix}
x \\
y
\end{bmatrix}=\begin{pmatrix}
10 \\
8
\end{pmatrix}\\\\\\\
Sistema~~associado!\\\\\\\\
\begin{cases}
x+y=10\\
0x+y=8
\end{cases}\\\\\\
\boxed{y=8}\\\\\
x+8=10\\\\\
x=10-8\\\\\
\boxed{x=2}\\\\\\
\boxed{Resposta:~~S=\{2,8\}}
A)\\\\\
\begin{pmatrix}
1 & 1 \\
0 & 1 \\
\end{pmatrix}.\begin{bmatrix}
x \\
y
\end{bmatrix}=\begin{pmatrix}
10 \\
8
\end{pmatrix}\\\\\\\
Sistema~~associado!\\\\\\\\
\begin{cases}
x+y=10\\
0x+y=8
\end{cases}\\\\\\
\boxed{y=8}\\\\\
x+8=10\\\\\
x=10-8\\\\\
\boxed{x=2}\\\\\\
\boxed{Resposta:~~S=\{2,8\}}](https://tex.z-dn.net/?f=A%29%5C%5C%5C%5C%5C%0A%5Cbegin%7Bpmatrix%7D+%0A++1+%26amp%3B+1+%5C%5C+%0A++0+%26amp%3B+1+%5C%5C%0A++%5Cend%7Bpmatrix%7D.%5Cbegin%7Bbmatrix%7D+%0A++x++%5C%5C+%0A+y++%0A++%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bpmatrix%7D+%0A++10+%5C%5C+%0A+8+%0A++%5Cend%7Bpmatrix%7D%5C%5C%5C%5C%5C%5C%5C%0ASistema%7E%7Eassociado%21%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ax%2By%3D10%5C%5C%0A0x%2By%3D8%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7By%3D8%7D%5C%5C%5C%5C%5C%0Ax%2B8%3D10%5C%5C%5C%5C%5C%0Ax%3D10-8%5C%5C%5C%5C%5C%0A%5Cboxed%7Bx%3D2%7D%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7BResposta%3A%7E%7ES%3D%5C%7B2%2C8%5C%7D%7D%0A%0A)
![b)\\\\\
\begin{pmatrix}
1 & 1&1 \\
0 & 1&1 \\
0&0&1
\end{pmatrix}.\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}= \begin{pmatrix}
6 \\
5 \\
3\\
\end{pmatrix}\\\\\\\
Sistema~~associado!\\\\\\
\begin{cases}
x+y+z=6\\
~~~~~y+z=5\\
~~~~~~~~~~z=3
\end{cases}\\\\\\\
Veja,z~~e~~igual~~a~~tres,basta~~ir~~fazendo~~a~~substituic\~ao\\\\\
para~~determinar~~as~~outras~~variaveis.\\\\\
z=3\\\\\\\\
y+z=5\\\\
y+3=5\\\\\
y=5-3\\\\\
\boxed{y=2}
b)\\\\\
\begin{pmatrix}
1 & 1&1 \\
0 & 1&1 \\
0&0&1
\end{pmatrix}.\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}= \begin{pmatrix}
6 \\
5 \\
3\\
\end{pmatrix}\\\\\\\
Sistema~~associado!\\\\\\
\begin{cases}
x+y+z=6\\
~~~~~y+z=5\\
~~~~~~~~~~z=3
\end{cases}\\\\\\\
Veja,z~~e~~igual~~a~~tres,basta~~ir~~fazendo~~a~~substituic\~ao\\\\\
para~~determinar~~as~~outras~~variaveis.\\\\\
z=3\\\\\\\\
y+z=5\\\\
y+3=5\\\\\
y=5-3\\\\\
\boxed{y=2}](https://tex.z-dn.net/?f=b%29%5C%5C%5C%5C%5C%0A%5Cbegin%7Bpmatrix%7D+%0A++1+%26amp%3B+1%26amp%3B1+%5C%5C+%0A++0+%26amp%3B+1%26amp%3B1+%5C%5C%0A0%26amp%3B0%26amp%3B1%0A++%5Cend%7Bpmatrix%7D.%5Cbegin%7Bbmatrix%7D+%0A++x++%5C%5C+%0Ay++%5C%5C+%0A++z++%5C%5C%0A++%5Cend%7Bbmatrix%7D%3D+%5Cbegin%7Bpmatrix%7D+%0A++6+%5C%5C+%0A++5+%5C%5C+%0A3%5C%5C%0A++%5Cend%7Bpmatrix%7D%5C%5C%5C%5C%5C%5C%5C%0ASistema%7E%7Eassociado%21%5C%5C%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ax%2By%2Bz%3D6%5C%5C%0A%7E%7E%7E%7E%7Ey%2Bz%3D5%5C%5C%0A%7E%7E%7E%7E%7E%7E%7E%7E%7E%7Ez%3D3%0A%0A%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%0A%0AVeja%2Cz%7E%7Ee%7E%7Eigual%7E%7Ea%7E%7Etres%2Cbasta%7E%7Eir%7E%7Efazendo%7E%7Ea%7E%7Esubstituic%5C%7Eao%5C%5C%5C%5C%5C%0Apara%7E%7Edeterminar%7E%7Eas%7E%7Eoutras%7E%7Evariaveis.%5C%5C%5C%5C%5C%0Az%3D3%5C%5C%5C%5C%5C%5C%5C%5C%0Ay%2Bz%3D5%5C%5C%5C%5C%0Ay%2B3%3D5%5C%5C%5C%5C%5C%0Ay%3D5-3%5C%5C%5C%5C%5C%0A%5Cboxed%7By%3D2%7D%0A%0A)
![x+y+z=6\\\\\
x+2+3=6\\\\\
x+5=6\\\\\
x=6-5\\\\
\boxed{x=1}\\\\\\\
\boxed{Resposta:~~S=\{1,2,3\}}
x+y+z=6\\\\\
x+2+3=6\\\\\
x+5=6\\\\\
x=6-5\\\\
\boxed{x=1}\\\\\\\
\boxed{Resposta:~~S=\{1,2,3\}}](https://tex.z-dn.net/?f=x%2By%2Bz%3D6%5C%5C%5C%5C%5C%0Ax%2B2%2B3%3D6%5C%5C%5C%5C%5C%0Ax%2B5%3D6%5C%5C%5C%5C%5C%0Ax%3D6-5%5C%5C%5C%5C%0A%5Cboxed%7Bx%3D1%7D%5C%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7BResposta%3A%7E%7ES%3D%5C%7B1%2C2%2C3%5C%7D%7D%0A%0A)
23)
![Ponto~~(1,2,k)~~so~~substiuir~~e~~determinar~~k. Ponto~~(1,2,k)~~so~~substiuir~~e~~determinar~~k.](https://tex.z-dn.net/?f=Ponto%7E%7E%281%2C2%2Ck%29%7E%7Eso%7E%7Esubstiuir%7E%7Ee%7E%7Edeterminar%7E%7Ek.)
![\begin{pmatrix}
2 & -1&-1 \\
1 & 1&2 \\
3&2&-5
\end{pmatrix}.\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}= \begin{pmatrix}
-k \\
k^{2}+3 \\
7
\end{pmatrix} \begin{pmatrix}
2 & -1&-1 \\
1 & 1&2 \\
3&2&-5
\end{pmatrix}.\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}= \begin{pmatrix}
-k \\
k^{2}+3 \\
7
\end{pmatrix}](https://tex.z-dn.net/?f=+%5Cbegin%7Bpmatrix%7D+%0A++2+%26amp%3B+-1%26amp%3B-1+%5C%5C+%0A++1+%26amp%3B+1%26amp%3B2+%5C%5C%0A3%26amp%3B2%26amp%3B-5%0A++%5Cend%7Bpmatrix%7D.%5Cbegin%7Bbmatrix%7D+%0A++x+%5C%5C+%0A+y+%5C%5C+%0A++z++%5C%5C%0A++%5Cend%7Bbmatrix%7D%3D+%5Cbegin%7Bpmatrix%7D+%0A++-k++%5C%5C+%0A++k%5E%7B2%7D%2B3++%5C%5C%0A7%0A++%5Cend%7Bpmatrix%7D)
![Sistema~~associado!\\\\\\\\\ \begin{cases} 2x-y-z=-k\\ x+y+2z=k^{2}+3\\ 3x+2y-5z=7 \end{cases}\\\\\\\\ Com~~o~~sistema~~montado~~substituir~~o~~ponto\\\\\\\ P(1,2,k)\\\\\ II)\\\\\\ x+y+2z=k^{2}+3\\\\\\ 1+2+2k=k^{2}+3\\\\\ 3+2k=k^{2}+3\\\\\\ k^{2}-2k=0\\\\ k(k-2)=0\\\\ k=0\\\\\\ k=2\\\\\\\boxed{k=0}\\\\\\\ \boxed{Resposta:~~k=0} Sistema~~associado!\\\\\\\\\ \begin{cases} 2x-y-z=-k\\ x+y+2z=k^{2}+3\\ 3x+2y-5z=7 \end{cases}\\\\\\\\ Com~~o~~sistema~~montado~~substituir~~o~~ponto\\\\\\\ P(1,2,k)\\\\\ II)\\\\\\ x+y+2z=k^{2}+3\\\\\\ 1+2+2k=k^{2}+3\\\\\ 3+2k=k^{2}+3\\\\\\ k^{2}-2k=0\\\\ k(k-2)=0\\\\ k=0\\\\\\ k=2\\\\\\\boxed{k=0}\\\\\\\ \boxed{Resposta:~~k=0}](https://tex.z-dn.net/?f=Sistema%7E%7Eassociado%21%5C%5C%5C%5C%5C%5C%5C%5C%5C+%5Cbegin%7Bcases%7D+2x-y-z%3D-k%5C%5C+x%2By%2B2z%3Dk%5E%7B2%7D%2B3%5C%5C+3x%2B2y-5z%3D7+%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%5C%5C+Com%7E%7Eo%7E%7Esistema%7E%7Emontado%7E%7Esubstituir%7E%7Eo%7E%7Eponto%5C%5C%5C%5C%5C%5C%5C+P%281%2C2%2Ck%29%5C%5C%5C%5C%5C+II%29%5C%5C%5C%5C%5C%5C+x%2By%2B2z%3Dk%5E%7B2%7D%2B3%5C%5C%5C%5C%5C%5C+1%2B2%2B2k%3Dk%5E%7B2%7D%2B3%5C%5C%5C%5C%5C+3%2B2k%3Dk%5E%7B2%7D%2B3%5C%5C%5C%5C%5C%5C+k%5E%7B2%7D-2k%3D0%5C%5C%5C%5C+k%28k-2%29%3D0%5C%5C%5C%5C+k%3D0%5C%5C%5C%5C%5C%5C+k%3D2%5C%5C%5C%5C%5C%5C%5Cboxed%7Bk%3D0%7D%5C%5C%5C%5C%5C%5C%5C+%5Cboxed%7BResposta%3A%7E%7Ek%3D0%7D+)
Bom dia!
Bons estudos!
Solução!
Para resolver esse exercício você pode substituir os pontos nos sistema e igualar a zero ,ou resolves o sistema.
20)
21)
22)
23)
Bom dia!
Bons estudos!
Perguntas interessantes
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás