1a) 3!5!/4!6!
d) h!/(n - 2!
e) (n+1)!/(n+2)
f) (n+3)!/(n-2)! . (n-1)!/n+1)!
Soluções para a tarefa
Respondido por
1
a) ![\frac{3!5!}{4!6!}=\frac{3!5!}{4.3!.6.5!}=\frac{1}{24} \frac{3!5!}{4!6!}=\frac{3!5!}{4.3!.6.5!}=\frac{1}{24}](https://tex.z-dn.net/?f=%5Cfrac%7B3%215%21%7D%7B4%216%21%7D%3D%5Cfrac%7B3%215%21%7D%7B4.3%21.6.5%21%7D%3D%5Cfrac%7B1%7D%7B24%7D)
d)![\frac{n!}{(n-2)!}=\frac{n.(n-1).(n-2)!}{(n-2)!}=n(n-1) \frac{n!}{(n-2)!}=\frac{n.(n-1).(n-2)!}{(n-2)!}=n(n-1)](https://tex.z-dn.net/?f=%5Cfrac%7Bn%21%7D%7B%28n-2%29%21%7D%3D%5Cfrac%7Bn.%28n-1%29.%28n-2%29%21%7D%7B%28n-2%29%21%7D%3Dn%28n-1%29)
e)![\frac{(n+1)!}{(n+2)!}=\frac{(n+1)!}{(n+2)(n+2)!}=\frac{1}{(n+2)} \frac{(n+1)!}{(n+2)!}=\frac{(n+1)!}{(n+2)(n+2)!}=\frac{1}{(n+2)}](https://tex.z-dn.net/?f=%5Cfrac%7B%28n%2B1%29%21%7D%7B%28n%2B2%29%21%7D%3D%5Cfrac%7B%28n%2B1%29%21%7D%7B%28n%2B2%29%28n%2B2%29%21%7D%3D%5Cfrac%7B1%7D%7B%28n%2B2%29%7D)
f)![{\frac{(n+3)!}{(n-2)!}}.{\frac{(n-1)!}{(n+1)!}}=\\{\frac{(n+3)(n+2)(n+1)n(n-1)(n-2)!}{(n-2)!}}.{\frac{(n-1)!}{(n+1)n(n-1)!}}=\\{(n+3)(n+2)(n+1)n(n-1)}.{\frac{1}{(n+1)n}=\\(n+3)(n+2)(n-1) {\frac{(n+3)!}{(n-2)!}}.{\frac{(n-1)!}{(n+1)!}}=\\{\frac{(n+3)(n+2)(n+1)n(n-1)(n-2)!}{(n-2)!}}.{\frac{(n-1)!}{(n+1)n(n-1)!}}=\\{(n+3)(n+2)(n+1)n(n-1)}.{\frac{1}{(n+1)n}=\\(n+3)(n+2)(n-1)](https://tex.z-dn.net/?f=%7B%5Cfrac%7B%28n%2B3%29%21%7D%7B%28n-2%29%21%7D%7D.%7B%5Cfrac%7B%28n-1%29%21%7D%7B%28n%2B1%29%21%7D%7D%3D%5C%5C%7B%5Cfrac%7B%28n%2B3%29%28n%2B2%29%28n%2B1%29n%28n-1%29%28n-2%29%21%7D%7B%28n-2%29%21%7D%7D.%7B%5Cfrac%7B%28n-1%29%21%7D%7B%28n%2B1%29n%28n-1%29%21%7D%7D%3D%5C%5C%7B%28n%2B3%29%28n%2B2%29%28n%2B1%29n%28n-1%29%7D.%7B%5Cfrac%7B1%7D%7B%28n%2B1%29n%7D%3D%5C%5C%28n%2B3%29%28n%2B2%29%28n-1%29)
O Mozean espera ter ajudado!
d)
e)
f)
O Mozean espera ter ajudado!
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Química,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás