14 Resolva as inequações, sendo U=Q.
a)2(x+6)-3(x + 1) +5(x-4) > 0
b) 4(1-x) + 3 = 2(2x - 4)
c) 3(x + 1) + 4(x + 2) < 2(1 - x)
d) 3(x + 5) - 2(1 - 3x)2 4 (1 + x) - 2
e) (x + 4) - (x - 7) 2 2x - 3
f) 5(1 - x) + 3(x + 2) < x-4
Soluções para a tarefa
a) Primeiro, devemos aplicar a propriedade distributiva da multiplicação:
2 . (x + 6) - 3 . (x + 1) + 5 . (x - 4) > 0
(2 . x + 2 . 6) - (3 . x + 3 . 1) + [5 . x + 5 . (-4)] > 0
2x + 12 - 3x + 3 + 5x + (-20) > 0
Aplicamos a regra de sinais:
2x + 12 - 3x + 3 + 5x - 20 > 0
Agora, isolamos a incógnita. O que isso significa? Significa que vamos deixar todos os números com x (a incógnita) de um lado e os números normais do outro lado. Lembre-se que, ao passar um número para o outro lado da inequação, alteramos sua operação. Por exemplo, um +5 se tornará -5.
2x - 3x + 5x > 0 - 12 - 3 + 20
Então, somamos:
-x + 5x > -12 - 3 + 20
4x > -15 + 20
4x > 5
E, por fim, passamos o número quatro para o outro lado. Já que ele está multiplicando o x, quando chegar no outro lado se tornará uma divisão, que é a operação inversa. Obs: toda fração representa a divisão do numerador pelo denominador.
Você pode deixar o resultado em fração: x > 5/4
Ou, em número decimal:
x > 5 ÷ 4
x > 1,25
Vai de sua escolha!
b)
Não vou responder a b pois acredito que há um erro de digitação, pois a expressão apresentada tem um sinal de igualdade, então é uma equação, e não uma inequação.
Deixe-me um comentário dizendo se está mesmo digitado errado. Se sim, pode me mandar o certo que irei resolver. :)
c)
Seguimos os mesmos passos do primeiro exercício, realizando a distributiva da multiplicação.
3 . (x + 1) + 4 . (x + 2) < 2 . (1 - x)
(3 . x + 3 . 1) + (4 . x + 4 . 2) < [2 . 1 + 2 . (-x)
3x + 3 + 4x + 8 < 2 + (-2x)
3x + 3 + 4x + 8 < 2 - 2x
Isolamos a incógnita:
3x + 4x + 2x < 2 - 3 - 8
9x < -9
x < -9/9
x < -1
d)
Outro erro de digitação: não há nenhum sinal (como >, <...)
Favor verificar para que eu possa te ajudar :)
e)
Mesma coisa da alternativa D
f)
Distributiva:
5 . (1 - x) + 3 . (x + 2) < x - 4
[5 . 1 + 5 . (-x)] + (3 . x + 3 . 2) < x - 4
5 + (-5x) + 3x + 6 < x - 4
5 - 5x + 3x + 6 < x - 4
Isolamos as incógnitas:
- 5x + 3x - x < - 4 - 5 - 6
- 2x - x < - 9 - 6
-3x < -15
Aqui temos uma situação interessante: o x está negativo. Não podemos deixá-lo assim. Tudo o que devemos fazer é multiplicar os dois lados da equação por (-1)
(-1) . (-3x) < (-15) . (-1)
3x < 15
x < 15/3
x < 5
Espero que tenha ajudado. Bons estudos!