Matemática, perguntado por Usuário anônimo, 1 ano atrás

100 pontos.
(vunesp)Considere o quadrado de lados paralelos aos eixos coordenados e circunscritos a circunfêrencia de equação x²+y²-6x-4y+12=0 
determine as equaçãoes das tetas que contém diagonais desse quadrado
obs! resposta é x-y-1=0 e x+y-5=0

Soluções para a tarefa

Respondido por albertrieben
71
Boa noite 

equação geral da circunferência
x² + y² - 6x - 4y + 12 = 0 

vamos completar os quadrados 
x
² - 6x + 9 - 9 + y² - 4y + 4 - 4 + 12 = 0

equação reduzida
(x - 3)² + (y - 2)² = 1

para x = 3, (y - 2)² = 1, y - 2 = 1, y = 3
para x = 3, (y - 2)² = 1, y - 2 = -1, y = 1
para y = 2, (x - 3)² = 1, x - 3 = 1, x = 4
para y = 2, (x - 3)² = 1, x - 3 = -1, x = 2

coordenada do quadrado

A(2,3)
B(4,3)
C(4,1)
D(2,1)

equação reta suporte da diagonal AC

x   y   1   x   y
2   3   1  2   3
4   1   1  4   1

det = 3x + 4y + 2 - 12 - x - 2y = 0

2x + 2y - 10 = 0

x + y - 5 = 0

equação reta suporte da diagonal BD

x   y   1   x   y
4   3   1  4   3
2   1   1  2   1

det = 3x + 2y + 4 - 6 - x - 4y = 0

2x - 2y - 2 = 0

x - y - 1 = 0








Perguntas interessantes