Matemática, perguntado por leonardo4727, 1 ano atrás

100 pontos.Me expliquem passo a passo cm fazer as contas da questao

Anexos:

Soluções para a tarefa

Respondido por MATHSPHIS
2
  \left[\begin{array}{cc}3&6\\6&8\end{array}\right]  \left[\begin{array}{c}tg \alpha\\cos \beta\end{array}\right]  =  \left[\begin{array}{c}0\\-2\sqrt3\end{array}\right] \\
\\
3tg\alpha+6cos \beta=0\\
6tg \alpha+8cos \beta=-2\sqrt3\\
\\
6tg \alpha+12cos\beta=0\\
6tg \alpha+8cos \beta=-2\sqrt3\\
\\
4cos\beta=2\sqrt3\\
cos \beta=\frac{\sqrt3}{2}\\
\\
\beta=\frac{\pi}{6} \ rad\\
\\
3tg \alpha+6.\frac{\sqrt3}{2}=0\\
3tg \alpha=-3\sqrt3\\
\\
tg \alpha=-sqrt3\\
\\
\alpha=\frac{5\pi}{3}\\

\alpha + \beta=\frac{-\pi}{6}+\frac{\pi}{3}=\frac{-\pi+2\pi}{6}=\frac{\pi}{6}
Respondido por oliverprof
0
\dbinom {3~~6} {6~~8}.\dbinom {tg \alpha} {cos \beta}=\dbinom {0} {-2 \sqrt{3} }\to\dbinom {3tg\alpha+6cos\beta} {6tg \alpha+8cos\beta}= \dbinom {0} {-2 \sqrt{3} } \\  \\   \\\begin {cases} 3tg\alpha+6cos\beta=0~~. (-2)\\ 
6tg \alpha+8cos\beta =-2 \sqrt{3} \\
\end {cases} \to \begin {cases} -6tg\alpha-12cos\beta=0\\ 
6tg \alpha+8cos\beta =-2 \sqrt{3} \\
\end {cases} (+)   \\ \\ -4cos \beta=-2 \sqrt{3}\to  cos~\beta =\dfrac{-2 \sqrt{3} }{-4}=  \dfrac{ \sqrt{3} }{2}\therefore \beta  =30\°=\frac{\pi }{6}6tg\alpha+8cos\beta=-2 \sqrt{3} \\ 
6tg \alpha+8 .\dfrac{ \sqrt{3} }{2} =-2 \sqrt{3}  \\ 6tg \alpha=-2 \sqrt{3} -4 \sqrt{3}  \\ 6tg \alpha =-6 \sqrt{3}   \\ \alpha =- \sqrt{3} =300\°=-60\°=- \dfrac{ \pi }{3} \\    \\  \alpha + \beta =- \dfrac{ \pi }{3}  +\dfrac{ \pi }{6}= -\dfrac{2 \pi + \pi }{6} \therefore  \alpha + \beta =  -\dfrac{ \pi }{6} \\ \\  \\   .

leonardo4727: mas essa sua boa vontade em ajudar e top
leonardo4727: vlw eu me viro sem vc
leonardo4727: sim
leonardo4727: ok
Perguntas interessantes