10^logx+2^0=log(10/2)
Soluções para a tarefa
Respondido por
0
Olá,
use as propriedades:

![10^{\log(x+2^0)}=\log\left( \dfrac{10}{2}\right)\\
\log_{10}[10^{\log(x+1)}]=\log_{10}\left( \dfrac{10}{2}\right)\\
\log_{10}(10)^{\log_{10}(x+1)}=\log_{10}(10)-\log_{10}2\\
\log_{10}(x+1)\cdot\log_{10}10=1-\log_{10}2\\
1\cdot\log_{10}(x+1)=1-\log_{10}2\\
\log_{10}(x+1)=1-\log_{10}2\\
\log_{10}(x+1)+\log_{10}2=1\\
\log_{10}[(x+1)\cdot2]=1\\
\log_{10}(2x+2)=1\\\\
2x+2=10^1\\
2x+2=10\\
2x=10-2\\
2x=8\\\\
x= \dfrac{8}{2} \\\\
x=4\\\\\\
\huge\boxed{S=\{4\}} 10^{\log(x+2^0)}=\log\left( \dfrac{10}{2}\right)\\
\log_{10}[10^{\log(x+1)}]=\log_{10}\left( \dfrac{10}{2}\right)\\
\log_{10}(10)^{\log_{10}(x+1)}=\log_{10}(10)-\log_{10}2\\
\log_{10}(x+1)\cdot\log_{10}10=1-\log_{10}2\\
1\cdot\log_{10}(x+1)=1-\log_{10}2\\
\log_{10}(x+1)=1-\log_{10}2\\
\log_{10}(x+1)+\log_{10}2=1\\
\log_{10}[(x+1)\cdot2]=1\\
\log_{10}(2x+2)=1\\\\
2x+2=10^1\\
2x+2=10\\
2x=10-2\\
2x=8\\\\
x= \dfrac{8}{2} \\\\
x=4\\\\\\
\huge\boxed{S=\{4\}}](https://tex.z-dn.net/?f=10%5E%7B%5Clog%28x%2B2%5E0%29%7D%3D%5Clog%5Cleft%28+%5Cdfrac%7B10%7D%7B2%7D%5Cright%29%5C%5C%0A%5Clog_%7B10%7D%5B10%5E%7B%5Clog%28x%2B1%29%7D%5D%3D%5Clog_%7B10%7D%5Cleft%28+%5Cdfrac%7B10%7D%7B2%7D%5Cright%29%5C%5C+%0A%5Clog_%7B10%7D%2810%29%5E%7B%5Clog_%7B10%7D%28x%2B1%29%7D%3D%5Clog_%7B10%7D%2810%29-%5Clog_%7B10%7D2%5C%5C%0A%5Clog_%7B10%7D%28x%2B1%29%5Ccdot%5Clog_%7B10%7D10%3D1-%5Clog_%7B10%7D2%5C%5C%0A1%5Ccdot%5Clog_%7B10%7D%28x%2B1%29%3D1-%5Clog_%7B10%7D2%5C%5C%0A%5Clog_%7B10%7D%28x%2B1%29%3D1-%5Clog_%7B10%7D2%5C%5C%0A%5Clog_%7B10%7D%28x%2B1%29%2B%5Clog_%7B10%7D2%3D1%5C%5C%0A%5Clog_%7B10%7D%5B%28x%2B1%29%5Ccdot2%5D%3D1%5C%5C%0A%5Clog_%7B10%7D%282x%2B2%29%3D1%5C%5C%5C%5C%0A2x%2B2%3D10%5E1%5C%5C%0A2x%2B2%3D10%5C%5C%0A2x%3D10-2%5C%5C%0A2x%3D8%5C%5C%5C%5C%0Ax%3D+%5Cdfrac%7B8%7D%7B2%7D+%5C%5C%5C%5C%0Ax%3D4%5C%5C%5C%5C%5C%5C%0A%5Chuge%5Cboxed%7BS%3D%5C%7B4%5C%7D%7D)
Tenha ótimos estudos ;D
use as propriedades:
Tenha ótimos estudos ;D
Perguntas interessantes
Português,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás