Matemática, perguntado por souza6572, 1 ano atrás

1°) Calcule a distância entre os pontos dos dados a seguir :

a) A ( 3 , 7 ) e B ( 1 , 4 )

b) C ( 3 , -1 ) e D ( 3 , 5 )

c) D ( -2 , -5 ) e E ( 0 , 0 )

d) E ( 0 , -2 ) e F ( 3 , 4 )

e) F ( 3 , 3 ) e G ( -3 , 3 )

f) G ( - 4 , 0 ) e H ( 0 , 3 )

g) H ( -1 , 2 ) e I ( 2 , 6 )

h) I ( -3 , 5 ) e J ( 3 , 13 )​

Soluções para a tarefa

Respondido por OctaGENIO
3

Explicação passo-a-passo:

a) A ( 3 , 7 ) e B ( 1 , 4 )

D=√(3-1)²+(7-4)²

D=√(2)²+(3)²

D=√4+9

D=√13

b) C ( 3 , -1 ) e D ( 3 , 5 )

D=√(3-3)²+(-1-5)²

D=√(0)²+(-6)²

D=√0+36

D=√36

D=6

c) D ( -2 , -5 ) e E ( 0 , 0 )

D=√(-2-0)²+(-5-0)²

D=√(-2)²+(-5)²

D=√4+25

D=√29

d) E ( 0 , -2 ) e F ( 3 , 4 )

D=√(0-3)²+(-2-4)²

D=√(-3)²+(-6)²

D=√9+36

D=√45

D=√9.5

D=3√5

e) F ( 3 , 3 ) e G ( -3 , 3 )

D=√(3+3)²+(3-3)2

D=√(6)²+(0)²

D=√36+0

D=√36

D=6

f) G ( - 4 , 0 ) e H ( 0 , 3 )

D=√(-4-0)²+(0-3)²

D=√(-4)²+(-3)²

D=√16+9

D=√25

D=5

g) H ( -1 , 2 ) e I ( 2 , 6 )

D=√(-1-2)²+(2-6)²

D=√(-3)²+(-4)²

D=√9+16

D=√25

D=5

h) I ( -3 , 5 ) e J ( 3 , 13 )

D=√(-3-3)²+(5-13)²

D=√(-6)²+(-8)²

D=√36+64

D=√100

D=10

Anexos:
Respondido por CyberKirito
3

a) A(3,7) B(1,4)

\Delta\:x=x_{A}-x_{B}=3-1=2

\Delta\:y=y_{7}-y_{4}=3

D_{A,B}=\sqrt{{(\Delta\:x)}^{2}+{(\Delta\:y)}^{2}}

D_{A,B}=\sqrt{{2}^{2}+{3}^{2}}

D_{A,B}=\sqrt{4+9}

D_{A,B}=\sqrt{13}

b) C(3,-1) D(3,5)

\Delta\:x=x_{C}-x_{D}=3-3=0

\Delta\:y=y_{C}-y_{D}=-1-5=-6

D_{C,D}=\sqrt{{0}^{2}+{(-6)}^{2}}

D_{C,D}=\sqrt{0+36}

D_{C,D}=\sqrt{36}

D_{C,D}=6

c)D(-2,-5) E(0,0)

\Delta\:x=x_{E}-x_{D}=0-(-2)=0+2=2

\Delta\:y=y_{E}-y_{D}=0-(-5)=0+5=5

D_{E,D}=\sqrt{{\Delta\:x}^{2}+{\Delta\:y}^{2}}

D_{E,D}=\sqrt{{2}^{2}+{5}^{2}}

D_{E,D}=\sqrt{4+25}

D_{E,D}=\sqrt{29}

d) E(0,-2) F(3,4)

\Delta\:x=x_{F}-x_{E}=3-0=3

\Delta\:y=y_{F}-y_{E}=4-(-2)=4+2=6

D_{F,E}=\sqrt{{\Delta\:x}^{2}+{\Delta\:y}^{2}}

D_{F,E}=\sqrt{{3}^{2}+{6}^{2}}

D_{F,E}=\sqrt{9+36}\\D_{F, E} =\sqrt{45}=3\sqrt{5}

e) F(3,3) G(-3,3)

\Delta\:x=x_{F}-x_{G}=3-(-3)=3+3=6

\Delta\:y=y_{F}-y_{G}=3-3=0

D_{F,G}=\sqrt{{\Delta\:x}^{2}+{\Delta\:y}^{2}}

D_{F,G}=\sqrt{{6}^{2}+{0}^{2}}=\sqrt{36}=6

f) G(-4,0) H(0,3)

\Delta\:x=x_{H}-x_{G}=0-(-4)=4

\Delta\:y=y_{H}-y_{G}=3-0=3

D_{H,G}=\sqrt{{\Delta\:x}^{2}+{\Delta\:y}^{2}}

D_{H,G}=\sqrt{{4}^{2}+{3}^{2}}

D_{H,G}=\sqrt{16+9}=\sqrt{25}=5

g) H(-1,2) I(2,6)

\Delta\:x=x_{I}-x_{H}=2-(-1)=3

\Delta\:y=y_{I}-y_{H}=6-2=4

D_{I, H}=\sqrt{{\Delta\:x}^{2}+{\Delta\:y}^{2}}

D_{I,H}=\sqrt{{3}^{2}+{4}^{2}}

D_{I,H}=\sqrt{9+16}=\sqrt{25}=5

h) I(-3,5) J(3,13)

\Delta\:x=x_{J}-x_{I}=3-(-3)=6

\Delta\:y=y_{J}-y_{I}=13-5=8

D_{J, I}=\sqrt{{6}^{2}+{8}^{2}}

D_{I, J}=\sqrt{36+64}=\sqrt{100}=10

\bf{\it{Bons\:Estudos!}}

Perguntas interessantes