Matemática, perguntado por andrademarrques, 10 meses atrás

10- a) 6
b) -6
c) 5
d) -5​

Anexos:

Nasgovaskov: 9 e 10 ?

Soluções para a tarefa

Respondido por Nasgovaskov
1

Explicação passo-a-passo:

9) Determinar as raízes da equação:

\mathsf{x^2 - 2x - 8 = 0}

\mathsf{a = 1~~b = - 2~~ c = - 8}

\mathsf{\Delta = b^2 - 4ac}

\mathsf{\Delta = (-2)^2 - 4\cdot1\cdot(-8)}

\mathsf{\Delta = 4 + 32}

\mathsf{\Delta = 36}

\mathsf{x = \dfrac{- b \pm \sqrt{\Delta}}{2a}}

\mathsf{x = \dfrac{- (-2) \pm \sqrt{36}}{2\cdot1}}

\mathsf{x = \dfrac{2 \pm 6}{2}}

\mathsf{\star \: x' = \dfrac{2 + 6}{2} = \dfrac{8}{2} = 4}

\mathsf{\star \:  x" = \dfrac{2 - 6}{2} = - \dfrac{4}{2} = - 2}

\boxed{\mathsf{S = \left\{- 2 \:  \:  ;  \:  \: 4 \: \right\}}}

==================================

10) Determinar as raízes da equação:

\mathsf{x^2 + 12x + 36 = 0}

\mathsf{a = 1~~b = 12~~c = 36}

\mathsf{\Delta = b^2 - 4ac}

\mathsf{\Delta = {12}^2 - 4\cdot1\cdot36}

\mathsf{\Delta = 144 - 144}

\mathsf{\Delta = 0}

\mathsf{x = \dfrac{- b \pm \sqrt{\Delta}}{2a}}

\mathsf{x = \dfrac{- 12 \pm \sqrt{0}}{2\cdot1}}

\mathsf{x = \dfrac{- 12 \pm 0}{2}}

\mathsf{x = -  \dfrac{12}{2} = - 6}

\boxed{\mathsf{S = \left\{- 6 \right\}}}

Perguntas interessantes