1) usando a formula de bhaskara, descubra as raízes da equação:
a) x²-64x+663=0
b) 3x²+147x-2646=0
Soluções para a tarefa
Respondido por
1
a) D= -64²-4.1.663
D= 4096-2652
D= 1444
X= [-(-64)+-√144]/2.1
X=[64+-38]/2
X'= (64+38)/2 = 51
X"= (64-38)/2 = 13
b) D= 147²-4.3.(-2646)
D= 21609+31752
D= 53361
X= (-147+-√53361)/2.3
X= (-147+-231)/6
X'= (-147-231)/6= -63
X"= (-147+231)/6= 14
D= 4096-2652
D= 1444
X= [-(-64)+-√144]/2.1
X=[64+-38]/2
X'= (64+38)/2 = 51
X"= (64-38)/2 = 13
b) D= 147²-4.3.(-2646)
D= 21609+31752
D= 53361
X= (-147+-√53361)/2.3
X= (-147+-231)/6
X'= (-147-231)/6= -63
X"= (-147+231)/6= 14
Respondido por
3
a)
x² - 64x + 663 = 0
a = 1; b = - 64; c = 663
Δ = b² - 4ac
Δ = (-64)² - 4.1.663
Δ = 4096 - 4.663
Δ = 4096 - 2652
Δ = 1444
√Δ = 38
x = - b +/- √Δ = - (-64) +/- √1444
----------------- -------------------------
2a 2.1
x = 64 + 38
------------- = 102/2 = 51
2
x = 64 - 38
------------ = 26/2 = 13
2
***************************************
b)
3x² + 147x - 2646 = 0 (:3)
x² + 49x - 882 = 0
a = 1; b = 49; c = - 882
Δ = b² - 4ac
Δ = 49² - 4.1.(-882)
Δ = 2401 + 4.882
Δ = 2401 + 3528
Δ = 5929
√Δ = 77
x = - b +/- √Δ = - 49 +/- √5929
--------------- --------------------
2a 2.1
x = - 49 + 77 28/2 = 14
-------------- =
2
x = - 49 - 77 - 126/2 = - 63
-------------- =
2
x² - 64x + 663 = 0
a = 1; b = - 64; c = 663
Δ = b² - 4ac
Δ = (-64)² - 4.1.663
Δ = 4096 - 4.663
Δ = 4096 - 2652
Δ = 1444
√Δ = 38
x = - b +/- √Δ = - (-64) +/- √1444
----------------- -------------------------
2a 2.1
x = 64 + 38
------------- = 102/2 = 51
2
x = 64 - 38
------------ = 26/2 = 13
2
***************************************
b)
3x² + 147x - 2646 = 0 (:3)
x² + 49x - 882 = 0
a = 1; b = 49; c = - 882
Δ = b² - 4ac
Δ = 49² - 4.1.(-882)
Δ = 2401 + 4.882
Δ = 2401 + 3528
Δ = 5929
√Δ = 77
x = - b +/- √Δ = - 49 +/- √5929
--------------- --------------------
2a 2.1
x = - 49 + 77 28/2 = 14
-------------- =
2
x = - 49 - 77 - 126/2 = - 63
-------------- =
2
Perguntas interessantes
Psicologia,
8 meses atrás
Artes,
8 meses atrás
ENEM,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás