Administração, perguntado por Anacaroline4740, 1 ano atrás

1) Uma fundição produz blocos para motor de caminhões. Os furos para as camisas devem ter diâmetro de 100 mm, com tolerância de 5 mm. Para verificar qual é o diâmetro médio no processo, a empresa
vai retirar uma amostra com 36 blocos e medir os diâmetros de 36 furos (1 a cada bloco). Suponha que o desvio padrão (populacional) dos diâmetros seja conhecido e igual a 3 mm.

a) Qual é o desvio padrão da distribuição da média amostral?

b) Qual é a probabilidade da média amostral diferir da média populacional (desconhecida) em mais do que 0,5 mm (para mais ou para menos)?

c) Qual é a probabilidade da média amostral diferir da média populacional (desconhecida) em mais do que 1 mm (para mais ou para menos)?

d) Se alguém afirmar que a média amostral não se distanciará da média populacional em mais do que 0,98 mm, qual é a probabilidade dessa pessoa acertar?

e) Se alguém afirmar que a média amostral n

Soluções para a tarefa

Respondido por Iucasaraujo
10

Olá.


a)

desvio padrão = [variância/raiz de n] = 3/raiz de 36 = 3/6 = 0,5mm


b)

Z = ["valor" - média/desvio padrão] = 0,5/0,5 = 1


P (-1 > Z > 1)

P (Z > 1) = P (2 < -1)

P (Z > 1) = 0,1587 = P (Z < -1)

P (-1 > Z > 1) = 2 . 0,1587 = 0,3174.


c)

Z = ["valor" - média/desvio padrão]

Z = 1/0,5 = 2


P(-2 > Z > 2)

P(Z>2) = P(Z<-2)

P(Z > 2) = 0,0228 = P(Z < -2)

P(-2,0>Z>2,0) = 2 . 0,0228 = 0,0456.


d)

Z = ["valor" - média/desvio padrão]

Z = 0,98/0,5 = 1,96

P(-1,96 < Z < 1,96)

P(Z>1,96) = P(Z<-1,96)

P(Z > 1,96) = 0,025 = P(Z < -1,96)

P(-1,96<Z<1,96) = 1 - 2 . 0,025 = 0,95


e)

Z = ["valor" - média/desvio padrão]

Z = 1,085/0,5 = 2,17

P(-2,17 > Z > 2,17)

P(Z>2,17) = P(Z<-2,17).

P(Z > 2,17) = 0,015 = P(Z < -2,17)

P(Z > 2,17) = 2 . 0,015 = 0,03

Perguntas interessantes