1) Se x e y são números reais tais que 2ˣ = m e
= n, então
é igual a:
a) 2(m-n)
b) 
c) 
d) 
e) 
2) O valor da expressão
é:
a) 1/8
b) 1/4
c) 1/2
d) 1
e) 2
3) Se 2ˣ = a e
= b, para x e y reais, então o valor de
é igual a:
a) a⁶b²
b) b²a⁻⁶
c) a⁻⁶b⁻²
d) a⁶b⁻²
e)
Soluções para a tarefa
Respondido por
1
1)

2)
![4.(0,5)^{4}+\sqrt{0,25}+8^{-\frac{2}{3}}=\\\\=4.(5.10^{-1})^{4}+\sqrt{25.10^{-2}}+\frac{1}{8^{\frac{2}{3}}}=\\\\=4.625.10^{-4}+5.10^{-1}+\frac{1}{\sqrt[3]{8^{2}}}=\\\\=2500.10^{-4}+0,5+\frac{1}{\sqrt[3]{(2^{3})^{2}}}=\\\\=0,25+0,5+\frac{1}{\sqrt[3]{2^{6}}}=\\\\=0,75+\frac{1}{2^{2}}=\\\\=0,75+\frac{1}{4}=\\\\=\frac{3+1}{4}=\\\\=\frac{4}{4}=\\\\=1 4.(0,5)^{4}+\sqrt{0,25}+8^{-\frac{2}{3}}=\\\\=4.(5.10^{-1})^{4}+\sqrt{25.10^{-2}}+\frac{1}{8^{\frac{2}{3}}}=\\\\=4.625.10^{-4}+5.10^{-1}+\frac{1}{\sqrt[3]{8^{2}}}=\\\\=2500.10^{-4}+0,5+\frac{1}{\sqrt[3]{(2^{3})^{2}}}=\\\\=0,25+0,5+\frac{1}{\sqrt[3]{2^{6}}}=\\\\=0,75+\frac{1}{2^{2}}=\\\\=0,75+\frac{1}{4}=\\\\=\frac{3+1}{4}=\\\\=\frac{4}{4}=\\\\=1](https://tex.z-dn.net/?f=4.%280%2C5%29%5E%7B4%7D%2B%5Csqrt%7B0%2C25%7D%2B8%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%3D%5C%5C%5C%5C%3D4.%285.10%5E%7B-1%7D%29%5E%7B4%7D%2B%5Csqrt%7B25.10%5E%7B-2%7D%7D%2B%5Cfrac%7B1%7D%7B8%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%3D%5C%5C%5C%5C%3D4.625.10%5E%7B-4%7D%2B5.10%5E%7B-1%7D%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7B8%5E%7B2%7D%7D%7D%3D%5C%5C%5C%5C%3D2500.10%5E%7B-4%7D%2B0%2C5%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7B%282%5E%7B3%7D%29%5E%7B2%7D%7D%7D%3D%5C%5C%5C%5C%3D0%2C25%2B0%2C5%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7B2%5E%7B6%7D%7D%7D%3D%5C%5C%5C%5C%3D0%2C75%2B%5Cfrac%7B1%7D%7B2%5E%7B2%7D%7D%3D%5C%5C%5C%5C%3D0%2C75%2B%5Cfrac%7B1%7D%7B4%7D%3D%5C%5C%5C%5C%3D%5Cfrac%7B3%2B1%7D%7B4%7D%3D%5C%5C%5C%5C%3D%5Cfrac%7B4%7D%7B4%7D%3D%5C%5C%5C%5C%3D1)
3)

2)
3)
flaviotheodore:
Não entendi o que foi feito na quinta linha do exercício 3...
Perguntas interessantes
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás